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Abstract: The forecast of the generation of electrical energy from the solar resource is associated
with its uncertainty due to the meteorological variations that it presents. Solar power generation
forecasts are important for the efficient operation of solar plants. This article shows a methodology
entailing a multilayer neural network with backpropagation and input data from a model with
time lag coordinates for a horizon of 24 h and beyond. The neural network model was compared
with statistical and prediction models numerical time, resulting in a MAPE of 0.57% and a MAE of
69.29 W.
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1. Introduction

Currently, economic development has increased disproportionately, causing greater
energy demand throughout the world, putting the supply and demand of it at risk. To
satisfy the need for energy, sources of conventional origin have been exploited; however,
these compromise the health of living beings and the environment, which is why the use of
sources of renewable origin with a low carbon ratio has been proposed [1].

Photovoltaics is an affordable, free, and easily accessible energy type that has proven to be
a clean renewable source and is found in abundance almost everywhere in the world. Its use
has increased in recent years, being incorporated into the energy repertoire in different parts
of the world [2]. In 2021, fifty countries generated a tenth of their electricity from renewable
sources, with photovoltaic energy standing out. In 2020 there were only 43 countries and
in 2019 there were 36 [3], which indicates that more and more countries are betting on
the development of research in the use of photovoltaic energy; however, this brings with
it particular challenges posed by the intermittent origin of such renewable energies, such
intermittency depending on their availability and variability [4].

The use of photovoltaic energy has been one of the topics of interest as a research
objective in recent years. This is due to the growth of the clean energy industry and
the commitments obtained at the United Nations Conference on Climate Change, the
latter seeking the use of energy with a low carbon ratio [5], in addition to the increasing
meteorological events that have directly affected the generation of electric power [6].

Large-scale photovoltaic power plants present difficulties in the management of the
solar resource due to their intermittency, affecting the system of connection to the network,
storage, and distribution; it is, therefore, necessary to protect the system from such adversi-
ties, which is why the search for more accurate and precise forecasts of photovoltaic energy
is the development area of this work [7].
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There are different methods to develop the prediction of electrical energy from re-
newables, such as: statistical models, Numerical Weather Prediction (NWP), Artificial
Intelligence (AI), and hybrid models [8–10]. Each of the previous models has their best use
and their respective areas for improvement.

Statistical models are based on the history of the data, that is, from past observations
characteristics are obtained that help predict future data through the minimization of
errors [11,12]. This approach depends on the quality of the data and their pre-processing;
among the most used are: Autoregressive Models (AR), exponential smoothing model,
Autoregressive Models and Moving Averages (ARMA), Autoregressive Models Integrated
with Moving Averages (ARIMA), Autoregressive Models Integrated with Moving Averages
with Seasonality (SARIMA) [13–15]. The models based on NWP are based on the physical-
mathematical phenomena of meteorological and geological origin through atmospheric
parameters, with their use enabling understanding of the current state of the atmosphere.
The data are extracted through satellite stations and soil measurement devices, with the
measurement instruments requiring constant monitoring and calibration [16,17]. On the
other hand, models based on Artificial Intelligence have been widely used in recent years,
since they allow the prediction of stochastic data so that photovoltaic and wind energy
present such behavior in their observations [18], thus becoming a method that allows its
development and improves its performance. In the case of hybrid methods, they are used
to obtain the best qualities of each of the previously described methods and improve their
performance [19,20].

Photovoltaic (PV) power forecasting is characterized by two types of models according
to the time scale: ultrashort for data from seconds to hours and short term for next day
observations [21]. The first model is used in real time, while the second is for planning
the next day. Currently there are investigations that have been developed with the aim
of providing a good prediction of photovoltaic energy, models have been proposed based
on statistical methodologies, such as the case of models that use a SARIMA technique
to generate information from their data. Past observations are later incorporated into a
multilayer neural network with a backward propagation algorithm, where the selection
of the parameters will achieve a prediction to an ultra-short horizon. Neural networks
with short-term memory are a widely used technique due to their performance capacity;
however, this type of network is improved with the contribution of other techniques.
This is the case of models that use a convolutional neural network as a base [22], which
is a type of classifying network. On the other hand, within the prediction models of
photovoltaic energy, artificial intelligence techniques are used, as is the case of supervised
learning machines that pre-treat their input elements and incorporate a linear regression
for the correlation of their data [23]. There is a classification according to the efficiency of
photovoltaic energy prediction models in which, according to the mean absolute percentage
error, it establishes that the models that present a value less than 10% are accurate and
reliable, a value between 10–20% indicates a good prediction, 20–50% means a reasonable
prediction, and more than 50% indicates an inaccurate model [24].

The prediction models of photovoltaic energy are important and fundamental to avoid
possible penalties to the operators of the photovoltaic power generation plants, reduce the
risks of their connection to the electrical grid, and specify the use of energies with a low
carbon ratio [25]. Its study is necessary for the development and fulfillment of the goals
established to reduce climate change, as there are still areas of opportunity that must be
explored to improve the performance of forecast models. Hybrid models have been shown
to be capable of improving PV power prediction performance; however, they are not yet
fully explored for development in research. Given the technological advances that have
been developed in recent decades, this paper shows a methodology of a hybrid method
that establishes:
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• A technique that combines PV power prediction methods for a short-term scale for
large amounts of data.

• The development of a model for the prediction of photovoltaic energy through neural
networks that will have as input information the data of an embedding model with
delay coordinates and will be compared with a clear sky model and a SARIMA.

• Finally, the proposed model will be validated with real data from a photovoltaic plant.

2. Materials and Methods
2.1. Data Acquisition

The acquisition of the database was obtained through the Solar Radiation Monitoring
Laboratory of the University of Oregon, a free source that allows visualization of experi-
mental data from its research projects. Figure 1 shows a satellite image of the photovoltaic
array installation used as the objective of this investigation, which corresponds to daily
observations of a system [26].
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Figure 1. Area of the study experiment. (a) The red line shows the array of a photovoltaic system in
Ashland; (b)the red circle show the location of the photovoltaic array has a latitude of 42.19 and a
longitude of 122.70 at an altitude of 595 m.

The database has 315,648 observations with a horizon resolution of every five minutes,
the information period of the observations is from 1 January 2018 00:00 to 30 November
2021 23:55. Table 1 presents six variables of the photovoltaic array that were used to carry
out the present experiments.

Table 1. Variables extracted by Solar Radiation Monitoring Laboratory of the University of Oregon.

Variables Units

Global radiation Wh/m2

Direct radiation Wh/m2

Diffuse radiation Wh/m2

Power W
Wind speed m/s
Temperature ◦C

Figure 2 shows the time series of the first 2000 observation of the power variable. The
behavior of the series is cyclical.
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Figure 2. Time series of the power a photovoltaic system.

The time series has a total of 1283 missing data, which corresponds to less than 10%
of the total data, so a data imputation was applied by taking the last observation into
consideration for the periods of missing hours. Table 2 shows the percentage of missing
data according to the database variables.

Table 2. Missing time series data.

Global Radiation Power Wind Speed Temperature

0.28% 0.39% 0.23% 0.13%

Once the time series was completed, the following experiments were carried out in a
sequential form:

Clear Sky Model
SARIMA Model
Lag Coordinate Embedding Model
Multilayer neural networks

2.2. Clear Sky Model

A clear sky model is based on the calculation of solar radiation transfer through
algorithms designed for the simulation of the wavelength in the physical interactions
between solar radiation and atmospheric particles. Equation (1) shows the calculation of
global solar radiation:

G = GCS × τc (1)

where G is the global solar irradiance ( W
m2 ), GCS is the global irradiance of the clear sky ( W

m2 ),
and τC is the transmissivity of the clouds that model the system. To carry out the clear sky
model, the apparent instantaneous movement of the sun was calculated using the equation
of Cooper: the angle of inclination δ establishes the amount of solar radiation that reaches
the earth, which is inversely proportional to the square of the distance from the sun [26].
Equation (2) shows the magnitudes to be considered in the angle of inclination according
to the Cooper equation.

δ = 23. 45 sin
[

360
365

(dn + 284)
]

(2)

where dn is an arbitrary day of the year. To calculate the apparent movement of the sun,
the latitude of Ashland was incorporated as reference data, which resulted in the global
irradiance; later, based on the information from the photovoltaic array, an adjustment was
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made to the IV curve of the solar panel according to the characteristics of the manufacturer,
in such a way that the output power of the system was calculated according to each observa-
tion. The clear sky model does not consider specific characteristics of the system or sudden
changes of physical origin, such as: system damage, system maintenance, or a physical
phenomenon with little anticipation, among others, so one of its main disadvantages is its
characterization of ideal conditions of the environment and the system.

2.3. Autoregressive Model of Order Moving Averages with Seasonality (P, D, Q)s

The Integrated Autoregressive Model of Moving Averages of Order with Seasonality
(P, D, Q)s is a combination of the autoregressive models AR (p) and moving averages MA
(q), with seasonality of order p, d, q, with the particularity of including a restoration process
called differences. In addition, it incorporates seasonality as a component for the forecast
calculation of a variable, leaving the following order (P, D, Q)s. It is a model that works
with past observations and has the ability to identify seasonal behavior in a time series.
Equation (3) shows the variables considered for calculating the model:

Yt = ϕ1Yt−1 + · · ·+ ϕp Yt−p + εt − θqεt−1 − · · · θqεt−q (3)

where Yt is the instantaneous moment of the forecast, ϕ is the autoregressive coefficient
together with Yt−p, i.e., the normalized record of the time series to be modeled, θ is
the moving average coefficient with its respective error term of each record, i.e., εt−q.
Calculation of the model commences with the selection of 80% of its observations as
training and the other remaining for testing, followed by a Dickey-Fuller test to identify if
the time series is stationary; if it is not, the differences are calculated for its transformation.

The model obtained an array (4, 0, 3) (0, 1, 0) (288) which indicates that it considers four
autoregressive values and three moving averages of past observations with no difference
in a one-day seasonality, corresponding to 288 observations every five minutes.

2.4. Time Delay Coordinate Embedding Model

A Time Delay Coordinate Embedding model (TDC) consists of mapping the obser-
vations in different phases of space. The TDC model is useful for discovering effective
coordinate systems to represent the dynamics of physical systems. Recently, models iden-
tified by dynamic mode decomposition into time lag coordinates have been shown to
provide linear representations of strongly nonlinear systems. The use of significant models
of complex non-linear systems from measurement data aims to potentiate and improve the
characterization, prediction, and control of observations.

Takens and Sauer [27] established that if the sequence really consists of scalar mea-
surements of the state of a dynamical system, then, under certain assumptions, the time
delay embedding provides a one-to-one picture of the original ensemble, described by the
following equation:

sn−h = f (x)− (m − 1)τ, sn − (m − 2)τ, . . . , sn (4)

where (sn−h) is the time series observed at regular intervals, f (x) is the length of the
time series, (τ) is the time lag, (m) is the number of dimensions in which to embed (τ)sn,
meaning that the time lag of the time series is large enough to provide information for the
next instant in time. Figure 3 shows the structure of the TDC model. The column headers
locate the dimensions of the experiments in the time series dynamically as X_t2 , X_t1 , X_t0 ;
the observation in the current time written as X_t0 and two previous ones, for the forecast
of the following observation, are based on these three observations resulting in h1, yielding
the observation X4; once the predicted value is established, the following observations are
embedded successively within the same matrix.
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Figure 4 also shows that, as the displacement of the dimensions given by is advanced,
i.e., X_t2 , X_t1 , X_t0 , the moment will come when there will be no observations that can
continue to return results for the last forecasted observations and will be marked as NA
(absence of data).
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2.5. Artificial Neural Networks

Artificial Neural Networks (ANN) are mathematical models that try to reproduce
the functioning of the nervous system, made up of a set of units called neurons. The
functioning of a neural network depends on the structure selected for its performance. In
the development of the neural network model, it was decided to use a multilayer-type
network, and the information resulting from the TDC model was used as input data in
order to provide more information to the network for its training. In the structure of the
network, different parameters were tested in order to obtain an accurate forecast. The
multilayer neural network had 80% of the training information and the rest was used for
validation. Table 3 shows the structures that had a positive degree of forecast accuracy.

Table 3. Multilayer network structure.

Structure ANN Parameters

Network 1.
Hidden layers (6, 123, 10)
Activation function Hyperbolic tangent
Error threshold 0.01
Algorithm Back propagation
Epoch 100
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Table 3. Cont.

Structure ANN Parameters

Network 2.
Hidden layers (3, 143, 7)
Activation function Sigmoid
Error threshold 0.01
Algorithm Back propagation
Epoch 100

Network 3.
Hidden layers (7, 128, 12)
Activation function Hyperbolic tangent
Error threshold 0.01
Algorithm Back propagation
Epoch 100

3. Results and Discussion

Figure 4 shows a comparison of the models of neural networks with different archi-
tectures in their configuration, SARIMA, and clear sky index with respect to the actual
observations of the photovoltaic array. The observations estimated with each model were
obtained as a product time series with the same cyclical pattern that corresponds to the
generation of electrical energy from the solar resource. The time of the clear sky index
model is the one with the greatest variation compared to the actual observations. Figure 4
shows that the network 1, which has a network architecture and configuration, presents a
fluctuation closer to reality.

The models with different error metrics were evaluated to determine their reliability,
including mean absolute percentage error, mean absolute error (MAE), and coefficient of
determination (R2). Table 4 shows that in the calculation of the MAPE, the model that had
the lowest degree of error was network 1, giving a value of 0.57% compared to the clear
sky index model that had an error of 38.6%, the latter due to the model assuming that,
at all times, the meteorological conditions are stable and there are no technical failures
of the photovoltaic system. In the case of the values obtained for network 2 and 3, there
were variations that depend on the architecture of the grid from the hidden layers and the
activation function. The largest value of the MAE was obtained by the clear sky index with
1096.34 W of deviation compared to the research models; the value of the lowest deviation
was obtained by network 1 with 69.29 W. In the case of the coefficient of determination, the
model that had the best approximation of the estimate with respect to the real value was
network 1 with a value of 0.97, while other models presented greater variation.

Table 4. Forecast error metrics.

Models MAPE MAE MSE R2

SARIMA 9.06% 302.91 313,756.96 0.87
Network 1 0.57% 69.29 82,826.71 0.97
Network 2 1.57% 335.17 1,089,554.92 0.93
Network 3 4.05% 521.73 4,505,871.20 0.91
Sky Index 38.6% 1096.34 28,563,065.34 0.51

The neural network model 1 presented a MAPE value of 0.57%, which indicates
that the performance of the model has a good reliability since it belongs to the range of
0–10%. [24].

4. Conclusions

This paper proposes supplying input data to a back-propagated multilayer neural
network from output data of a time delay coordinate embedding model and comparing
the results with statistical and numerical weather prediction models, as well as different
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architectures of the neural network. The model of network 1 obtained a MAPE of 0.57%
and an R2 of 0.97, indicating that the model based on multilayer neural networks presents
a good performance in the forecast of solar power.
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