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Abstract: In this paper, the Recurrent Singular Spectrum Decomposition (R-SSD) algorithm is pro-
posed as an improvement over the Recurrent Singular Spectrum Analysis (R-SSA) algorithm for
forecasting non-linear and non-stationary narrowband time series. R-SSD modifies the embedding
step of the basic SSA method to reduce energy residuals. This paper conducts simulations and
real-case studies to investigate the properties of the R-SSD method and compare its performance with
R-SSA. The results show that R-SSD yields more accurate forecasts in terms of ratio root mean squared
errors (RRMSEs) and ratio mean absolute errors (RMAEs) criteria. Additionally, the Kolmogorov–
Smirnov Predictive Accuracy (KSPA) test indicates significant accuracy gains with R-SSD over R-SSA,
as it measures the maximum distance between the empirical cumulative distribution functions of
recurrent prediction errors and determines whether a lower error leads to stochastically less error.
Finally, the non-parametric Wilcoxon test confirms that R-SSD outperforms R-SSA in filtering and
forecasting new data points.

Keywords: Singular Spectrum Analysis; signal extraction; recurrent forecasting; Kolmogorov–Smirnov

1. Introduction

Singular Spectrum Analysis (SSA) is a widely used tool for time series analysis and sig-
nal processing, first introduced by Broomhead and King [1] in 1986. Over the years, several
studies, including [2–9], have attempted to improve the decomposition, reconstruction, and
forecasting capabilities of SSA in various fields. The method breaks down a time series into
a few principal components that are used to reconstruct the original series, making it an
efficient analysis tool that focuses on the most relevant features of the data. Moreover, SSA
does not rely on statistical assumptions such as linearity or stationarity, which are often
unrealistic in real-world scenarios. Both univariate and multivariate time series data can be
analyzed using SSA, with the former examining a single time series variable and the latter
studying multiple time series variables simultaneously, for more details see [9–17]. Singular
Spectrum Analysis (SSA) can be utilized for forecasting future trends. The first step in ap-
plying SSA to forecasting is to decompose the time series into its trend, seasonal, and noise
components. Once these components have been identified, they can be extrapolated into the
future using various methods, such as Vector SSA (V-SSA) and Recurrent SSA (R-SSA) [17];
while V-SSA has proven effective in many instances, there is still room for improvement in
the R-SSA forecasting approach. This paper proposes an innovative recurrent forecasting
algorithm called R-SSD, which is expected to generate more accurate results. The R-SSD
method generates its coefficients from a modified trajectory matrix based on the new Sin-
gular Spectrum Decomposition (SSD) method over time-frequency datasets, see [18]. SSD
is an iterative approach that is based on the SSA decomposition method and chooses the
embedding dimension and principal components for the reconstruction and forecasting of a
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specific component series in a fully data-driven manner. In the Singular Spectrum Analysis
(SSA) method, the number of observations needed to construct the trajectory matrix is
not fixed and can vary. On the other hand, the Singular Spectrum Decomposition (SSD)
method requires a fixed number of repetitions of observations to construct the trajectory
matrix. The window length, denoted as L, determines the number of rows in the trajectory
matrix in both methods. A larger window length is preferred if the goal is to retain more
information, while a smaller window length is better for achieving statistical confidence,
for more details see [19,20]. When addressing time series that exhibit different frequency
domains, such as those with harmonic patterns where, for example, the first half of the
signal has low-frequency and the second half has high-frequency oscillations, extracting
the oscillatory components using the SSA method can be challenging as it requires setting
an appropriate window length at each step. However, the SSD method overcomes this
limitation by setting the embedding dimension or window length (L ≤ N/2) as a linear
function of the inverse of the dominant frequency of the data, denoted as 1/ fmax. This
adaptive approach ensures that SSD is a flexible decomposition method that can increase
its ability to capture oscillatory components while reducing residual energy, as detailed in
Appendix A.1 of [21]. As a result, it can be expected that SSD, being an improved version of
SSA, can provide more accurate predictions for new data points in time series with different
frequency domains.

The structure of this paper is as follows. In Section 2, we provide an introduction
to the methodology of the basic SSA method and the recurrent forecasting algorithm. In
Section 3, we present the methodology of the novel R-SSD forecasting approach. The results
of a simulation study, evaluating the properties and performance of the proposed R-SSD
method and comparing it to the established R-SSA approach, as well as the analysis of
real data, are reported in Section 4. All calculations were performed using R software,
specifically the Rssa package. Finally, in Section 5, we provide concluding remarks and
highlight the key findings of our study.

2. Singular Spectrum Analysis (SSA)

Singular Spectrum Analysis (SSA) is an effective nonparametric technique for analyz-
ing data. It can decompose a series into multiple components and make predictions based
on them. The method comprises two distinct stages: decomposition and reconstruction,
each of which involves two separate steps. To perform the SSA method, Algorithm 1
outlines the general process, and we primarily rely on the guidelines presented in [22,23].

Algorithm 1: Singular Spectrum Analysis (SSA).

Input: Time series Y = (y1, . . . , yN), N > 2, embedding window length L, and
number of eigentriples r

Output: Underlying components of the time series
1. Embedding: Construct the trajectory matrix X by taking time-lagged vectors

of length L from the time series.
2. Singular value decomposition (SVD): Compute the SVD of the trajectory matrix

X to obtain the singular vectors and singular values.
3. Grouping: Select the first r eigentriples based on the characteristics of the

singular values.
4. Reconstruction: Reconstruct the underlying components of the time series

by multiplying the retained eigentriples with the appropriate columns of the
trajectory matrix, and summing across these products.

R-SSA Forecasting Algorithm

Forecasting with SSA is applicable to time series that approximately satisfy a linear
recurrent relation (LRR). The general process for forecasting using the SSA method is
outlined by Algorithm 2, also described by Golyandina et al. [24].
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Algorithm 2: Recurrent Forecasting in Singular Spectrum Analysis (SSA).

Input: Time series Y = (y1, . . . , yN), N > 2, Window Length L, 1 < L < N, Linear
space Lr ⊂ RL of dimension r < L. {It is assumed that eL 6∈ LR where
eL = (0, 0, . . . , 0, 1)T ∈ RL, in other terms, Lr is not a ‘vertical’ space.}

Output: Forecasts for the next h time steps
1. Construct the trajectory matrix X = [X1, . . . , XK] of the time series

Y = (y1, . . . , yN).
2. Compute the singular value decomposition (SVD) of X to obtain the orthonor-

mal basis vectors Ui (i = 1, . . . , r) for the subspace Lr.
3. Perform the orthogonal projection step by computing the matrix

X̂ =
[

X̂1, . . . , X̂K

]
= ∑r

i=1 UiUT
i X. The vector X̂i is the orthogonal projection

of Xi onto the subspace Lr.
4. Construct the matrix X̃ = HX̂ =

[
X̃1 : · · · : X̃K

]
, which is referred to as the

Hankelization step.
5. Set ν2 = π2

1 + · · · + π2
r , where πi is the last component of the vector Ui

(i = 1, . . . , r). Moreover, assume that eL 6∈ Lr. This implies that Lr is not a
vertical space. Therefore, ν2 < 1.

6. Determine the vector R = (αL−1, . . . , α1)
T : R = 1(1− ν2)∑r

i=1 πiU∗i , where
U∗ ∈ RL−1 is the vector consisting of the first L− 1 components of the vector
U. Note that this does not depend on the choice of a basis U1, . . . , Ur in the
linear space Lr.

7. Define the time series YN+h = (y1, . . . , yN+h) using the following formula:

yi =


ỹi for i = 1, . . . , N
L−1

∑
j=1

αjyi−j for i = N + 1, . . . , N + h,
(1)

where ỹi(i = 1, . . . , N) are the reconstructed series. The values yN+1, . . . , yN+h
are the h step-ahead recurrent forecasts.

3. Singular Spectrum Decomposition (SSD)

In this section, we will introduce the Singular Spectrum Decomposition (SSD) method
and the related recurrent forecasting technique. The SSD method consists of a two-stage
approach with two steps in each stage as follows:

Stage 1. Decomposition (Modified Embedding and SVD)

The proposed approach enhances the basic SSA method by using a modified trajectory
matrix for a given time series Y = (y1, . . . , yN). The trajectory matrix is of size (L× N),
where L is the embedding dimension, and is denoted as XSSD. It can be expressed as

XSSD =


y1 y2 · · · yK yK+1 · · · yN
y2 y3 · · · yK+1 yK+2 · · · y1
...

...
. . .

...
...

. . .
...

yL yL+1 · · · yN y1 · · · yL−1

 =
[

X A
]
. (2)

Compared to the basic SSA method, the trajectory matrix in the SSD method includes
an additional block A, which leads to the incorporation of different permutations of the
total time series vector in each row of the modified trajectory matrix denoted as XSSD.
Further details can be found in references [18,21].
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Stage 2. Reconstruction (Grouping and Diagonal Averaging)

Similar to the grouping step in basic SSA (Section 2), a group of l eigentriples is
selected in the SSD method. In the diagonal averaging step, a matrix denoted as X̃SSD
is computed as an approximation of XSSD. This is achieved by computing the sum of l
matrices, each obtained by taking the outer product of the corresponding eigenvectors.
Mathematically, X̃SSD = ∑l

k=1 Ũik ŨT
ik

XSSD, where Ũis are the corresponding eigenvectors.
The transition to a one-dimensional time series can be achieved as follows:

i + j =

{
k + 1 and k + 1 + N when i + j < N

k + 1 when i + j ≥ N.
(3)

3.1. Choice of the Embedding Dimension

The choice of the embedding dimension in Singular Spectrum Analysis (SSA) is
crucial for accurately capturing the underlying structure of a time series. The embedding
dimension determines the number of time-lagged vectors used to construct the trajectory
matrix, affecting the amount of information retained in the decomposition. The embedding
dimension should be chosen large enough to capture all relevant information, but not
too large so as to include noise or irrelevant information, which can lead to an inaccurate
decomposition and overfitting. A common rule of thumb for choosing the embedding
dimension L in SSA is L ≤ N/2, see [25]. Furthermore, Vautard [26] proposed a criterion
for determining the appropriate window length in Singular Spectrum Analysis (SSA) when
analyzing time series with intermittent oscillations. According to this criterion, SSA can
isolate intermittent oscillations correctly if the inverse of the maximum spectral density of
the time series, denoted as fmax, is less than or equal to the window length L. In other words,
L should be chosen such that 1/ fmax ≤ L. However, for time series with varying frequency
domains, extracting oscillatory components using the SSA method can be challenging due
to the need to set an appropriate window length at each step, while in the SSD method, the
window length L is selected as a linear function of 1/ fmax and should be less than N/2,
where N is the length of the time series. This approach captures local structures in the time
series while minimizing noise inclusion.

3.2. R-SSD Forecasting Algorithm

Let λ̃1, . . . , λ̃L be the eigenvalues of XSSDXT
SSD, and Ũ1, . . . , ŨL be the corresponding

eigenvectors for the trajectory matrix XSSD. Then, the new R-SSD coefficients can be
computed as R̃ = (α̃L−1, . . . , α̃1) = 1/(1− ν̃2)∑r

i=1 π̃iŨ
′
i , where Ũ

′
i is the vector consisting

of the first L− 1 components of the vector Ũi, π̃i is the last component of the vector Ũi
and ν̃2 = ∑r

i=1 π̃2
i . Finally, to obtain the forecasting algorithm of R-SSD, we replace the αj

values in Equation (1) with α̃j values, where ỹis (i = 1, . . . , N) are the reconstructed series
obtained using the SSD method.

4. Empirical Results

We assess the performance of the R-SSA and R-SSD forecasting methods on real and
simulated time series in this section. A portion of the data is used for training, while the
remaining data are reserved for testing. We evaluate the accuracy of forecasting using the
root mean squared error (RMSE) and mean absolute error (MAE) criteria and compare the
results using the ratios defined in Equations (4) and (5).

RRMSEh =

√
∑m+n−h

t=m (yt+h − ŷt+h|t)2√
∑m+n−h

t=m (yt+h − ˆ̂yt+h|t)2
, (4)

RMAEh =
∑m+n−h

t=m |yt+h − ŷt+h|t|
∑m+n−h

t=m |yt+h − ˆ̂yt+h|t|
, (5)
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where the lengths of the training sample, test sample, and forecast horizon are denoted by
m, n and h, respectively. On the other hand, ŷt+h|t denote the h-step ahead forecast obtained
via the new R-SSD forecasting method and ˆ̂yt+h|t denote the h-step ahead forecast obtained
via the R-SSA forecasting method. If the ratio of the average RMSE values obtained by
R-SSD and R-SSA, denoted as RRMSE, is less than 1 at a given forecasting horizon h,
denoted as RRMSEh < 1, then the R-SSD procedure is more accurate than R-SSA at
horizon h. Alternatively, when RRMSEh > 1, it can be inferred that the accuracy of the
R-SSD procedure is less than R-SSA. The same inference can be made using the ratio of
the average MAE values obtained by R-SSD and R-SSA, denoted as RMAE. Additionally,
to compare the accuracy of two sets of forecasts, the Kolmogorov–Smirnov Predictive
Accuracy (KSPA) test is considered, as proposed in [27]. The KSPA test has two objectives:
firstly, to determine if there is a significant statistical difference between the distribution of
predictive errors by testing if the empirical cumulative distribution functions FSSD and FSSA
for the forecast errors of the two methods are significantly different. The two-sided KSPA
test evaluates this difference with H0 : FSSD(z) = FSSA(z) and H1 : FSSD(z) 6= FSSA(z).
The second objective of the KSPA test is to determine if the method with the lowest error
based on a given loss function also exhibits a statistically significantly smaller error than the
corresponding method. The one-sided KSPA test is formulated as H0 : FSSD(z) ≤ FSSA(z)
and H1 : FSSD(z) > FSSA(z). Rejecting the null hypothesis indicates that the cumulative
distribution function (c.d.f.) of forecast errors obtained from the SSD model is shifted
toward the left and above the c.d.f. of forecast errors obtained from the SSA model,
suggesting that the SSD method has a smaller stochastic error compared to the SSA method,
for more details see [27].

In the following, two simulated time series with a length of 200 are generated, with the
first 140 observations being designated as the training sample (m = 140) and the remaining
data as the test sample (n = 60). The number of leading eigenvalues (r) for reconstructing
and forecasting the time series is selected based on the rank of the corresponding trajectory
matrix. This simulation is repeated 1000 times, and the mean of RRMSEs and RMAEs
are calculated.

4.1. Simulated Examples

Example 1. In the first example, we examine a sine series that encompasses two distinct frequencies,
as illustrated below:

yt =

{
sin(2πt) + εt, 1 ≤ t ≤ 100
sin(5πt) + εt, 101 ≤ t ≤ 200

where the noise term εt is generated from a normal distribution at varying levels of signal-to-noise
ratio (SNR). In this example, both basic SSA and SSD methods are compared using a rank value of
r = 5 for forecasting horizons of h = 1, 3, 6, 12, and 24 steps ahead. The R-SSD method outperforms
the basic R-SSA method in terms of forecasting accuracy across all window lengths (L) and SNR
levels tested, as shown in Figures 1 and 2. For nearly all forecast horizons h, the values of RRMSE
and RMAE are less than 1, indicating that the R-SSD method provides more accurate predictions
than the R-SSA method. The accuracy is consistent across different metrics, with the lowest RRMSE
and RMAE values occurring at the lowest window length level (L = 6) for all SNR levels when
h = 12 and 24. Overall, the results suggest that the R-SSD method is superior to the R-SSA method
in providing accurate predictions.
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Figure 1. The RRMSE results for different forecast horizons (h = 1, 3, 6, 12, and 24) in Example 1.
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Figure 2. The RMAE results for different forecast horizons (h = 1, 3, 6, 12, and 24) in Example 1.

Example 2. Example 2 involves an exponential series with two different frequencies as follows:

yt =

{
exp(α0 + α1t) + cos(2πt/6) + εt, 1 ≤ t ≤ 100
exp(α0 + α1t) + cos(5πt/6) + εt, 101 ≤ t ≤ 200

where the term εt represents the noise generated from a normal distribution at various levels of
signal-to-noise ratio (SNR). In this study, both basic SSA and SSD methods use a rank of 25 for the
trajectory matrix of the time series, with α0 = 0 and α1 = 0.01. RRMSE and RMAE are computed
for various forecast horizons (h = 1, 3, 6, 12, and 24) and SNR levels. As shown in Figures 3 and 4,
RRMSE and RMAE increase as the forecast horizon decreases, but decrease significantly when
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h = 24. The results indicate that the R-SSD method performs better as the value of L decreases.
However, for higher SNR levels, the R-SSA method outperforms the R-SSD method for larger values
of L. The lowest RRMSE and RMAE values are achieved when the window length and SNR are at
their lowest values.
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Figure 3. The RRMSE results for different forecast horizons (h = 1, 3, 6, 12, and 24) in Example 2.
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Figure 4. The RMAE results for different forecast horizons (h = 1, 3, 6, 12, and 24) in Example 2.

4.2. Real Data Analysis

In this section, we compare the forecasting performance of the proposed R-SSD method
with the basic R-SSA method using real data from fruit fly (Drosophila melanogaster)
embryos. The caudal protein in fruit fly embryos plays a crucial role in tail formation,
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acting as a transcription factor that regulates the expression of other genes by binding to
specific DNA sequences. The caudal protein is expressed in the cells of the “tail bud”,
which gives rise to the tail, and its activation triggers a gene expression cascade that
controls cell division, differentiation, and migration, ultimately leading to tail formation.
Mutations in the caudal gene can result in a loss of function of the protein, leading to
defects in tail formation such as a short or absent tail, as well as other developmental
defects related to segmentation. However, it is important to note that causality detection
techniques, as demonstrated by previous studies, can be sensitive to noise [23,28–30]. Here,
we analyze four gene expression profiles with varying lengths and dominant frequencies to
demonstrate the importance of utilizing an accurate noise filtering method, such as SSD, for
conducting reliable causality studies. To compare the forecasting performance of the R-SSA
and R-SSD approaches, we provide Tables 1–4 to summarize the obtained results for four
different time classes: ab2, ab18, be11, ad14. These tables display the respective forecasting
metrics, including RRMSE and RMAE, for each time class, enabling a comprehensive
comparison between the two methods. For each dataset, we considered the first 80% of
observations as the training sample and the remaining 20% as the test sample. The number
of leading eigenvalues (r) for reconstructing and forecasting the time series was selected
based on the rank of the corresponding trajectory matrix. Additionally, the dominant
frequency of the data (1/ fmax) was calculated for each dataset, and the window length
was chosen as a multiple of 1/ fmax and less than N/2. After selecting the appropriate L
and r, we utilized the observations from the training set to forecast the test sample data
and calculate the RRMSE and RMAE criteria for different h step-ahead recurrent forecasts,
using Equations (4) and (5).

Table 1. RRMSE and RMAE analysis of Cad Profile ab2, 1/ fmax = 2 with r = 16.

Horizon
L = 20 L = 30 L = 50

RRMSE RMAE RRMSE RMAE RRMSE RMAE

1 0.96 0.96 1.02 1.02 1.12 1.12
3 0.86 0.91 1.03 1.05 1.13 1.16
6 0.78 0.80 0.96 1.02 1.09 1.19
12 0.59 0.62 0.86 0.92 1.11 1.22
24 0.17 0.21 0.59 0.67 1.00 1.09

Based on the results presented in Table 1, it is evident that there is a discernible
difference in the RRMSE and RMAE values obtained using the R-SSA and R-SSD meth-
ods for L = 20, 30, and 50. The performance metrics show contrasting outcomes for
these window lengths, indicating that the choice of method can significantly impact the
forecasting accuracy.

Table 2. RRMSE and RMAE analysis for Cad profile ab18, 1/ fmax = 2, with r = 14.

Horizon
L = 20 L = 50 L = 80

RRMSE RMAE RRMSE RMAE RRMSE RMAE

1 0.82 0.82 1.27 1.27 1.14 1.14
3 0.88 0.86 1.15 1.21 1.01 1.07
6 0.91 0.92 1.17 1.26 1.03 1.10
12 0.90 0.91 1.23 1.31 1.08 1.17
24 0.84 0.86 1.25 1.36 1.16 1.31

Table 2 shows the RRMSE and RMAE values obtained by each model for the cad
profile ab18. As indicated in the table, the R-SSD method achieves a significant reduction in
both RRMSE and RMAE values for L = 20, which suggests that it generally provides better
signal extraction and forecast results compared to the R-SSA model for this window length.
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Additionally, for L = 50 and 80, the accuracy of the two methods is similar, indicating that
the R-SSD method can be preferable for smaller window lengths.

Table 3. RRMSE and RMAE analysis of Cad Profile be11, 1/ fmax = 3 with 3.

Horizon
L = 6 L = 18 L = 30

RRMSE RMAE RRMSE RMAE RRMSE RMAE

1 1.16 1.16 1.21 1.21 1.15 1.15
3 1.16 1.17 1.07 1.11 1.13 1.17
6 1.22 1.20 1.05 1.09 1.11 1.16
12 1.35 1.38 0.80 0.85 0.95 0.98
24 1.89 2.03 0.21 0.25 0.43 0.44

Table 3 summarizes the results of RRMSE and RMAE for the cad profile be11. The
findings indicate that the R-SSD method outperforms the R-SSA method, particularly for
L = 18 and 30 and horizons h = 12 and 24. Furthermore, a closer examination of the table
reveals that the highest accuracy is obtained when L = 18 and h = 24, as evidenced by the
greatest reduction in both RRMSE and RMAE values.

Table 4. RRMSE and RMAE analysis of Cad Profile ad14, 1/ fmax = 11 with 5.

Horizon
L = 11 L = 88 L = 110

RRMSE RMAE RRMSE RMAE RRMSE RMAE

1 1.26 1.26 1.28 1.28 1.15 1.15
3 1.22 1.30 1.23 1.30 1.17 1.17
6 1.12 1.25 1.27 1.33 1.16 1.20
12 0.96 1.03 1.37 1.43 1.31 1.32
24 0.73 0.78 1.50 1.59 1.47 1.53

Additionally, the forecasting methods R-SSD and R-SSA were evaluated for statistical
significance using the non-parametric two-sample Wilcoxon test and the Kolmogorov–
Smirnov Predictive Accuracy (KSPA) test. The results show a statistically significant
difference between the two methods, with R-SSD forecasts having smaller errors than
R-SSA forecasts with 95% confidence based on the one-sided KSPA test. The two-sided
KSPA test further supports the significant differences between the two methods with
95% confidence, and these findings are consistent across different embryos and L values,
especially for h = 24. These results demonstrate the superior accuracy of the R-SSD method
and highlight the importance of utilizing an accurate noise filtering method such as SSD
for precise causality studies. The Wilcoxon test also confirms the significant differences
between the two methods for all tested embryos and L values, with p-values less than 0.05.

5. Discussion

In this paper, we introduced a new forecasting method called Recurrent Singular
Spectrum Decomposition (R-SSD), which improves upon the standard R-SSA method by
enhancing the identification of fluctuation content and enabling a fully data-driven selection
of window length and principal components for reconstructing component series based on
dominant frequency periods. The results were evaluated using the non-parametric two-
sample Wilcoxon test and RRMSE/RMAE criteria, which demonstrated the superiority of
R-SSD over basic R-SSA in the majority of cases for various window lengths and forecasting
horizons. KSPA tests confirmed the ability of R-SSD to obtain significant components for
accurate forecasting of new data points. In summary, the proposed R-SSD method with its
improved trajectory matrix definition and window length selection shows promising results
in time series forecasting. Overall, the R-SSD method offers a viable alternative to the
standard R-SSA method and could lead to improved forecasting accuracy in a wide range
of applications. Further research and investigation into the R-SSD method’s performance
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under different scenarios and datasets may be valuable for its continued development and
potential adoption in practical settings.
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