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Abstract: Slope Entropy (SlpEn) is a recently proposed time series entropy estimation method for
classification. This method has yielded better results than other similar methods in all the published
studies so far. It is based on a signal-gradient thresholding scheme using two parameters, δ and γ,
in addition to the usual embedded dimension parameter m. In this work, we investigated the
possibility of adding one thresholding parameter more, termed θ, and we compared the original
method to the new one. The experiment results showed a small improvement using the new method
in terms of classification accuracy. However, the temporal cost increased significantly and therefore
we concluded it is not worth the extra effort unless maximum accuracy is of utmost importance.

Keywords: slope entropy; time series classification; parameter optimisation

1. Introduction

Entropy estimation methods are very popular among scientists for extracting part
of the possible hidden information present in a time series. These methods calculate the
relative frequency of a set of numerical or symbolic subsequences. Many scientific fields
have benefited from the high segmentation power of these methods. For example, they
have been widely used in biomedicine to classify electroencephalograms, time series of
electrocardiogram-RR, body temperature, and actigraph records, among many others. Each
of the current entropy calculation methods has its strengths and weaknesses.

In this work, we investigated the effect of adding more gradient quantisation in-
tervals to the recently proposed Slope Entropy (SlpEn) method on signal classification
accuracy [1,2]. This method is based on assigning symbols to intervals of slopes between
consecutive samples of time series [2].

In the general method, the δ and γ thresholds are responsible for labelling a slope
(difference between two time series consecutive samples) as low, high, or flat (tie). If it is
below δ, it is classified as tie. If it is between δ and γ, the slope is considered low. Otherwise,
it is high.

The analysis was carried out as a comparative study. Many datasets with different
signal types were employed to understand the impact of using a new additional gradi-
ent parameter in SlpEn. A grid search assessed the behaviour of all the datasets with
different values of the input parameters to optimise them, see δ < γ and γ < θ in the new
SlpEn variation.

The results obtained confirmed that adding a new parameter resulted in a small im-
provement in the classification accuracy. Specifically, the highest increment achieved using
the new variation was 3% higher, at most. However, the execution time was a lot longer
than for the original SlpEn method due to the nested resulting additional combinations of
δ, γ, and θ values in the grid search.
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The structure of the paper is as follows. In Section 2, we present the datasets used in
the experiments, a review of SlpEn, the proposed variation method, and the classification
process. In Section 3, we report all the results. In Section 4, we provide an interpretation
and analysis of all the results. Finally, we summarise our conclusions in the last section.

2. Methods
2.1. Datasets

The experimental dataset comprises several types of time series with different charac-
teristics in terms of bandwidth, length, and regularity. All of them are publicly available,
and many of the databases from which they have been extracted have already been used in
similar works, serving as a reference for result comparison. The datasets are (two classes
are used from each one):

– The Bern–Barcelona database [3]: A set of electroencephalographic records.
– The Fantasia database [4]: A set of electrocardiographic records of R-R intervals.
– The Ford A dataset [5]: A set of records obtained from industrial processes.
– The House Twenty dataset [6]: A set of records obtained from the electricity consump-

tion of 20 households in the UK.
– The PAF prediction dataset [7]: A set of electrocardiographic records of R-R intervals.
– The Worms two class dataset [8,9]: A set of records obtained from the movement of

genetically modified worms.
– The Bonn EEG dataset [10] : A set of electroencephalographic records.

2.2. SlpEn

SlpEn applies the general expression of Shannon entropy to the estimated probabilities
of a set of symbols. These symbols are assigned based on a range of differences between con-
secutive samples of subsequences extracted from a time series, X = {x0, x1, x2, . . . , xN−1}.
These symbols are generically obtained from xi − xi−1, with the thresholds defined by the
two parameters mentioned above: δ and γ [2]. Typically, δ is assigned a value of 0.001.

In the standard method, symbols +2, +1, 0, −1, and −2 are assigned according to
the range in which the differences are located. This process is graphically represented in
Figure 1.

Figure 1. Graphical representation of the calculation of symbols used in SlpEn based on the thresholds
γ and δ.

For each subsequence of length m, the corresponding symbol string is generated, and a
histogram is constructed with the number of occurrences of each pattern. Finally, Shannon
entropy is calculated on this histogram, as previously discussed.
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2.3. Modified SlpEn Using an Additional Gradient Interval

In the original method, symbols are assigned based on the difference between two
consecutive values. If the value xi − xi−1 < δ, the symbol 0 is assigned and the slope
is considered a tie. If the value xi − xi−1 > δ and xi − xi−1 > −γ or xi − xi−1 < −δ
and xi − xi−1 < γ, the symbol 1 or −1 is assigned, and the slope is considered low.
The last symbols assigned are 2 and −2, respectively, when the values xi − xi−1 > γ or
xi − xi−1 < −γ, indicating that the slope is high.

The proposed modified SlpEn splits the symbols into three levels instead, including
ties. Therefore, the assignment of symbols is now as follows.

– If xi > xi−1 + θ (maximum difference with respect to the parameter θ), the symbol
assigned is +3, indicating a large positive slope.

– If xi > xi−1 + γ and xi ≤ xi−1 + θ indicating a medium positive slope, the symbol
assigned is +2.

– If xi > xi−1 + δ and xi ≤ xi−1 + γ (below γ), an area that can be considered low from
the point of view of positive slopes, the symbol assigned is +1.

– In the region close to a gradient or slope of 0, when |xi − xi−1| ≤ γ, the symbol
assigned is 0. This area represents ties or equal values, which can create ambiguities
in other metrics.

– If xi < xi−1 − δ and xi ≥ xi−1 − γ (above the −45◦ angle when γ = 1 and below the
0 slope zone), the resulting symbol is −1. SlpEn uses a symmetric quantization, but
an asymmetric one could be used in future studies.

– If xi < xi−1 − γ and xi ≤ xi−1+ ≥is assigned as symbol −2, representing the average
negative value.

– Finally, if xi < xi−1− θ (maximum negative difference with respect to the parameter θ),
the symbol assigned is −3, indicating a large negative slope.

So, instead of having −2, −1, 0, 1, and 2, we now have −3, −2, −1, 0, 1, 2, and 3, as
shown in Figure 2.

Figure 2. Graphical representation of the calculation of symbols used in SlpEn based on the thresholds
γ, δ, and θ.

2.4. Classification Scheme

Using the experimental datasets described earlier, the optimal value of SlpEn that
maximised the accuracy of classifying records was calculated using the symmetric strategy
represented in Figures 1 and 2. Classification accuracy was defined as the percentage
or ratio of time series correctly classified with respect to the total number of series in an
experimental dataset.
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This process was repeated using a three-parameter distribution of regions as in Figure 2.
Now, in addition to having a specific value of γ, a higher value of θ was required. On the
negative slopes region, θ is lower than γ, following the relationship γ < θ and −γ > −θ.

A time series classification analysis was carried out, comparing accuracy between the
original SlpEn and the new proposed SlpEn variation. A grid search was conducted using
the described databases in Section 2.1 to find the optimal input parameter combination that
yielded maximum accuracy in each case.

For the baseline SlopEn method, we varied the parameter m within the range 3 to 9,
the δ parameter from 0 to δ, and γ from δ to 1.5. When using the additional parameter,
θ varied from γ to 1.5. The threshold used for classification was obtained from the ROC
curve of the process [11]. Specifically, the point on the curve closest to (1, 0) was used.

3. Experiments and Results

The experiments results showed a small improvement using the newly proposed
method. Specifically, the proposed SlpEn variation exhibited small improvements of
around 3% in classification accuracy after using a grid search. Table 1 presents a report of
the highest values of accuracy obtained with both SlpEn methods. However, the modified
SlpEn is far more time consuming than the original SlpEn.

Table 1. A comparative study between original SlpEn and modified SlpEn.

Classification Accuracy

Datasets Original SlpEn Modified SlpEn

The Bern–Barcelona 79% 81%
The Fantasia 86% 89%
The Ford A 94% 94%

The House Twenty 97% 97%
The PAF prediction 81% 83%

The Worms two class 72% 72%
The Bonn EEG dataset 95% 95%

4. Discussion

The highest reported accuracy was for Fantasia, which improved by 3% from 86% to
89%. PAF prediction and Bern–Barcelona both increased by 2%, from 79% to 81% and from
81% to 83%, respectively. Ford A, House Twenty, Worms two class, and Bonn EEG datasets
maintained the same accuracy, at 94%, 97%, 72%, and 95%, respectively.

Dividing the gradient into three or five levels does not seem to have a clear impact on
classification performance. Therefore, adding more parameters to SlpEn is not advisable
considering the amount of time consumed to achieve the small accuracy gains.

5. Conclusions

In this work, we presented a comparative study using different time series datasets to
understand the impact of adding a new thresholding parameter to SlpEn. We introduced the
parameter θ, and added it to δ and γ, expanding the symbolic intervals from −2, − 1, 0, 1,
and 2 to −3, − 2, − 1, 0, 1, 2, and 3. The results confirmed that the new method
achieved a minor improvement of 3%, but at the expense of a significant processing time
increase. Therefore, we do not recommend adding a new thresholding parameter due to
the diminishing return achievable, unless a minor classification improvement is critical (for
instance, in medical diagnosis applications).
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