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Abstract: In this work a novel application for multivariable forecasting is presented, applied to
hydrological variables and based on a multivariable NARX model. The proposed approach is
designed for two hydrological stations located at the Atrato River in Colombia where the variables of
water level, water flow and water precipitation are correlated by using the NARX model based on a
neural network structure. The structure of the NARX-based neural network is designed in order to
consider the complex dynamics of hydrological variables and their corresponding cross-correlations.
A short-term water level forecasting is designed based on the NARX model, to be used as an early
warning flood system. The validation of the proposed approach is performed by comparing the
estimation error with an ARX dynamic model. As a result, it is shown that a NARX model structure
is more suitable for water level forecasting than simplified structures.

Keywords: forecast; water level; neural network

1. Introduction

The accurate modeling of hydrological variables is crucial for effective flood forecasting
and the design and operation of water resource systems, as stated in the reference [1]. To
achieve this, two types of techniques are commonly used: white-box algorithms, which rely
on mathematical modeling, and black-box algorithms, which employ non-linear neural
network techniques based on artificial intelligence. In the context of early warning systems,
the latter technique has been used to great effect, as highlighted in [2], which discussed the
use of artificial neural networks (ANNs) for prediction and forecasting. Furthermore, the
combination of ANNs with the Soil and Water Assessment Tool (SWAT) has been applied
for runoff prediction and water management resources, as described in [3].

Hydrological models have been developed to support flood early warning systems
through the use of estimation and prediction algorithms. In [4], the authors focused on
developing a flood forecasting system (FFS) capable of providing early warning to UDS
managers of potential flooding, using a nonlinear autoregressive neural network with
exogenous inputs (NARX) to predict the impact of a storm. Meanwhile, in [5], a neural
network short-term memory model (LSTM) was proposed for flood forecasting, using
daily flow and rainfall as input data, and analyzing features that may affect the model’s
performance. In [6], the authors presented flood early warning systems that used machine
learning (ML) techniques, comparing the performance of five ML classification techniques
for short-duration flood forecasting. Lastly, Bande and Shete [7] described an IoT-based
flood monitoring and flood prediction system based on artificial neural networks (ANN),
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which aimed to monitor humidity, temperature, pressure, rainfall, and water level of rivers
and analyze their temporal correlation for flood prediction. The system was designed to
improve the scalability and reliability of the flood management system.

Several studies related to flood forecasting and monitoring using various ANN tech-
niques have also been developed. For example, in [8], the authors evaluated the bias
correction of real-time precipitation data and the improvement of hydrological models
using the ANN bias correction method for real-time flood forecasting. In [9], the authors
focused on developing five different ANN models for flood forecasting and compared their
performance. In [10], the authors use a multilayer perceptron to design a flood prediction
model with flow as input-output variables, and the proposed model’s effectiveness was
demonstrated through intensive experiments. In [11], the authors designed a flood mon-
itoring system that integrated flow and water level sensors and used a two-class neural
network to predict flood status from data stored in the database. Finally, in [12], the authors
employed a convolutional neural network (CNN) to predict time series variables such as
water level in a flood model, despite CNNs typically being used for two-dimensional image
classification with transfer learning.

In addition, in [13], a flood forecasting model that predicted future flood occurrence
was designed and evaluated by constructing a hybrid deep learning algorithm called
ConvLSTM, which integrated the predictive merits of CNN and a long-term memory
network (LSTM). In [14], a fuzzy neural network that used fuzzy numbers to account for
uncertainty in the results and model parameters was proposed to predict the peak flow
in an urban river. In [15], the potential of the AI computational paradigm for modeling
streamflow was explored by developing nine different flood prediction models using all
available training algorithms of ANN, fuzzy logic, and adaptive neuro-fuzzy inference
systems (ANFIS) algorithms. Lastly, in [16], a deep neural network was used to predict
floods as a function of temperature and rainfall intensity, and its accuracy and error were
compared with other machine learning models, such as the support vector machine (SVM),
K-nearest neighbor (KNN), and Naïve Bayes.

The use of real-time methods based on ANN was also proposed based on neural
networks. For example, in [17], a system for predicting flood levels was developed based
on real-time sensor data. The system used a multi-layer artificial neural network model
created with MATLAB to predict flood levels in advance using data collected from sensors
in a real-time monitoring system. In [18], a hybrid river flood forecasting model was
presented using time series analysis and artificial neural networks to explain and forecast
daily water discharge of the Mohawk River in New York. Multiple linear regression (MLR)
models and an ANN model were used to describe each component for predicting the water
discharge time series. In [19], five alternative machine learning techniques were used to
improve the hydrological model, including linear regression, neural network regression,
Bayesian linear regression, and reinforced decision tree regression, with the MIKE-11
hydrologic forecasting model used as a test system. In [20], a machine learning method was
presented that uses historical typhoon paths to predict flood hydrographs of a Taiwanese
watershed. Finally, in [21], a general framework for probabilistic flood forecasting was
introduced, which uses an unaccented Kalman filter (UKF) postprocessing technique to
model point forecasts made with a recurrent neural network and their corresponding
observations. The methodology was tested using a 6 h long-term time series of the Three
Gorges reservoir in China.

In this work, the application of a multivariable NARX model based on neural network
for short-term water level forecasting along the Atrato river in Colombia is presented and
evaluated. To this end, the present work uses data from two hydrological stations located
in the Atrato river, which are monitored by the Institute of Hydrology, Meteorology and
Environmental Studies (IDEAM). The data includes measurements of flow, precipitation,
and water levels sampled every 12 h over a period of 789 days. The multivariable NARX
model is trained to predict the water levels of each station based on the inputs of water level,
water flow and water precipitation by considering the inherent dynamic and correlation of
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the process. The performance of the models is evaluated based on the mean square error
of the estimated outputs compared to the actual data. The performance of the proposed
approach is compared to a multivariable ARX system. The main contribution of this paper
is a general design of a multivariable NARX model structure based on neural networks
for short-term water level forecasting. This work is organized as follows; in Section 2 the
theoretical framework where the hydrological variables and the NARX model for their
corresponding dynamic approximation is proposed. In Section 3 the experimental setup
and the estimation results are shown, and finally in Section 4 the conclusions and final
remarks are presented.

2. Theoretical Framework
2.1. Hydrological Variables

In order to perform water level forecasting based on the dynamic of a river, two
hydrological stations are located on a river in two different positions. In order to consider
the correlation among all the variables of the system and their corresponding nonlinearities,
a nonlinear dynamical model is proposed. In (1) the inputs and outputs of the proposed
model are shown.

y[k] =
[

yL1 [k]
yL2 [k]

]
, u[k] =


uF1 [k]

uPT1 [k]
uF2 [k]

uPT2 [k]

 (1)

where yL1 [k], yL2 [k] correspond to the two outputs of the level variable of the two stations,
uF1 [k], uF2 [k], uPT1 [k], uPT2 [k] are the four inputs of the neural network system correspond-
ing to the two stations of the multivariable system, i.e., the uFj [k] represents the j-th two
inputs of the flow variable of the two stations and uPTj [k] represents j-th; two more inputs of
the rainfall variable of the two stations already mentioned, thus obtaining a multivariable
system with four inputs and two outputs.

The dynamic of the hydrological variables is defined by considering a Nonlinear
function with an Auto-Regressive and exogenous inputs (NARX) as follows:

y[k] = f (y[k− 1], . . . , y[k− n], u[k− 1], . . . , u[k− n]) + η[k] (2)

being n the order of the NARX model and f (.) the nonlinear function, and η[k] the additive
noise at time instant k.

2.2. Narx Based Neural Network Structure

In order to consider the NARX model of (2), the inputs are selected as u[k− j] and
y[k− j], with j = 1, . . . , n, which correspond to a n-th order model In this work a 4-th order
model (n = 4) is considered according to [22] where an analysis of the order selection is
performed and the lowest estimations error is obtained for the 3-rd order model or higher.
Therefore, by considering the variables described in (1), the proposed NARX model consists
of 24 inputs and 2 outputs.

In order to approximate the nonlinear function of (2), the nonlinear function f (.) is
approximated by using a neural network structure f ∗(.), as depicted in Figure 1.
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Figure 1. NARX based Neural Networks Structure.

where the NARX model can be defined as follows:

y[k] = f ∗(y[k− 1], . . . , y[k− n], u[k− 1], . . . , u[k− n]) + η[k] (3)

To this end, 24 input activation functions with one hidden layer and 2 outputs are
considered. A feed-forward network is selected as a candidate for the NARX model in
order to speed-up the training process. The training of the NARX model is performed
offline by considering the data sample.

A linear ARX structure can be obtained by neglecting the hidden layer as depicted in
Figure 2.

Figure 2. ARX Structure.

where the ARX model can be defined as follows:

y[k] = −
4

∑
j=1

ajy[k− j] +
4

∑
j=1

bju[k− j] (4)

where Aj ∈ Rm×m and Bj ∈ Rm×m are the parameters of the model matrix, where y are the
outputs and u are the inputs; with j = 1, being p the order of the system, e[k] the noise with
m, the number of outputs and inputs of the system, y[k] ∈ Rm×1 and u[k] ∈ Rm×1.

3. Results
3.1. Experimental Setup

In order to validate the proposed approach, real measurements from two hydrological
stations located at the Atrato river are considered. The measured variables are: water
level, water flow, and water precipitation. The Atrato river is located in Colombia (South
America) and has a total length of 750 km with a variable width in a range of 150 m to
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500 m. In addition, the depth of the river has a variability in the range of 31m to 38 m. A
total amount of 789 days of data with a sample time of 12 h is considered, with initial date
1 January 2021.

In Table 1 the geographical positions of the hydrological stations are shown.

Table 1. Location of the hydrological stations.

Station 1 (E1) Station 2 (E2)

Longitude 76°40′10.75′′ W 76°39′44.13′′ W

Latitude 5°45′53.38′′ N 5°41′52.77′′ N

Altitude 20.579 MASL 20.83 MASL

City Belén de Bajirá Quibdó

In addition, it is worth noting that the distance in kilometers between the two stations
E1 and E2 is 447.1 km.

In order to validate the proposed approach, a comparison analysis of the proposed
NARX approach based on neural networks (3) is performed with a multivariable ARX
model (4). A visual comparison of the real and estimated signals is presented for the
ARX and NARX methods and also a quantitative evaluation based on the mean squared
error is performed. Both systems (ARX and NARX) are trained offline by considering the
measurement data. An evaluation in terms of the training error is also presented. The
feed-forward network structure for the NARX approach considers one hidden layer with
256 units. The Rectified Linear Unit (ReLU) Activation Function is selected for the proposed
approach, where the ReLU is a piecewise linear function that will output the input directly
if it is positive, or zero otherwise.

The implementation of the proposed NARX model based on neural networks and
also the ARX model is performed in Python by using Tensorflow, which is an open-source
machine learning library developed by Google.

3.2. Estimation Results

In this subsection the forecasting results for the two considered methods are presented:
The proposed multivariable NARX approach, and the multivariable ARX.

In Figure 3 the estimation results for the ARX method for each of the two water
level outputs are presented. In Figure 3a the short-term estimation of the first water level
output and also the real measurements are shown. In Figure 3b the short-term water
level forecasting of the second output as well as the real corresponding measurements are
depicted.

(a) (b)
Figure 3. Multivariable ARX short-term forecasting results for two water level outputs. (a) First
water level output and short-term estimation based on a multivariable ARX model. (b) Second water
level output and short-term estimation based on a multivariable ARX model.
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In Figure 3a,b shows that the real measurements are adequately estimated by using
the multivariable ARX model.

In Table 2 an analysis for the nonlinear neural network NARX in terms of the number of
nodes in the hidden layer and their corresponding mean squared estimation error is shown.

From Table 2 it can be seen that the total estimation error is reduced by increasing the
number of nodes in the hidden layer. It is noticeable that there is no significant reduction in
the total estimation error between 256 and 512 nodes. Therefore, in this work, 256 nodes in
the hidden layer are used for evaluation of the NARX models.

In Figure 4 the estimation results for the proposed multivariable NARX method for
each of the two water level outputs are presented, by using 256 nodes at the hidden layer
according to the results presented in Table 2. In Figure 4a the short-term estimation of the
first water level output and also the real measurements are presented. In Figure 4b the
short-term water level forecasting of the second output as well as the real corresponding
measurements are presented.

Table 2. Mean squared Estimation error for several nodes configurations.

NARX Hidden Layer Nodes Level 1 Level 2 Total

2 1.6867 1.6859 3.3726

4 0.0266 0.0275 0.0541

8 0.0254 0.0272 0.0526

16 0.0227 0.0257 0.0484

32 0.0232 0.0201 0.0433

64 0.0235 0.0180 0.0415

128 0.0176 0.0133 0.0309

256 0.0085 0.0108 0.0193

512 0.0078 0.0101 0.0179

(a) (b)
Figure 4. Multivariable NARX short-term forecasting results for two water level outputs. (a) First
water level output and short-term estimation based on a multivariable NARX model. (b) Second
water level output and short-term estimation based on a multivariable NARX model.

It is worth noting that in Figure 4a,b it is shown that also for the multivariable NARX
model, the real measurements are adequately estimated.

By considering the forecasting results presented in Figures 3 and 4, the proposed mul-
tivariable NARX and ARX approaches show an adequate performance by visual inspection.
In order to determine which approach tracks the dynamics of the hydrology variables more
adequately, a quantitative evaluation is performed. To this end, the mean squared error is
computed in order to compare the real measurements and their corresponding forecasting
for each of the considered methods. As a result, in Table 3 the mean squared error for
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the proposed multivariable NARX approach and also the multivariable ARX method are
presented. It can be seen that the estimation error for the proposed NARX model is lower
than the ARX model. It is worth noting that the reduction of estimation error for the NARX
approach in comparison to the ARX approach is over the 50% for all variables.

In Figure 5 the estimation errors during training for each of the considered methods
are shown. It can be seen that the multivariable ARX approach converge faster than the
proposed multivariable NARX approach. However, the training error was lower for the
NARX approach in comparison to the ARX approach. This behaviour validated the fact
that there are nonlinear dynamics inherent to the measured hydrological variables and
therefore the proposed NARX model forecast the data behaviour more adequately.

Table 3. Mean squared Estimation error.

Neural Network Model Level 1 Level 2 Total

ARX 0.0280 0.0263 0.0543

NARX 0.0085 0.0108 0.0193

(a) (b)
Figure 5. Training error. (a) Training error with the ARX multivariable model. (b) Training error with
the NARX model.

4. Discussions and Conclusions

In this work a novel application for multivariable forecasting method for hydrological
variables based on multivariable NARX model is presented. To this end, the nonlinear
function of the NARX model has been approximated by using neural networks. The
proposed multivariable NARX approach is compared to a multivariable ARX approach,
where the proposed NARX approach shows a lower estimation error (a reduction over a
50% error as shown in Table 3). By considering the training errors, it can be seen that the
training error is lower for the NARX approach in comparison to the ARX approach due
to the nonlinear dynamics inherent to the measured hydrological variables. In summary,
the proposed multivariable NARX model based on neural networks is an effective tool
for water level forecasting by considering the correlation among several hydrological
variables and several stations. It is worth noting that the main contribution of the proposed
approach is the design of a general structure for modeling that can be extended to several
hydrological systems with more stations and variables. In future work, online training,
white-box or more complex nonlinear structures can be used to describe the nonlinear
behavior of the system.
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