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Abstract: The study proposes an ensemble spatiotemporal methodology for short-term rainfall
forecasting using several data mining techniques. Initially, Spatial Kriging and CNN methods
were employed to generate two spatial predictor variables. The three days prior values of these two
predictors and of other selected weather-related variables were fed into six cost-sensitive classification
models, SVM, Naïve Bayes, MLP, LSTM, Logistic Regression, and Random Forest, to forecast rainfall
occurrence. The outperformed models, SVM, Logistic Regression, Random Forest, and LSTM, were
extracted to apply Synthetic Minority Oversampling Technique to further address the class imbalance
problem. The Random Forest method showed the highest test accuracy of 0.87 and the highest
precision, recall and an F1-score of 0.88.

Keywords: deep learning; spatial kriging; ensemble; cost-sensitive; data mining; imbalance learning

1. Introduction

Rainfall is identified as one of the most chaotic and dynamic phenomena that varies
spatiotemporally [1]. Heavy and extreme rainfall creates a serious threat to human lives
and properties through severe flooding. Therefore, an accurate rainfall nowcasting is of
great significance in preventing devastating consequences.

The data mining techniques optimally capture the hidden spatiotemporal patterns
among largely available weather-related data [2]. Many researchers achieved high predic-
tion accuracy in rainfall classification using techniques such as Random Forest, Artificial
Neural Network (ANN), K—Nearest Neighbour (KNN) and Support Vector Machine
(SVM). As a recent trend, deep learning methods such as Convolutional Neural Network
(CNN) and Long-Short-Term-Memory (LSTM) are employed to explore the meteorological
big data due to its promising technical advantages and performance [3]. The study per-
formed in [4] used K-means clustering to predict rainfall states. The identified clusters were
used as predictands for training the Classification and Regression Tree (CART) model with
five climate input variables and obtained a satisfactory value of goodness-of-fit. Another
study performed CART and C4.5 models with thirteen input variables to predict the chance
of rain and gained average accuracies of 99.2% (CART) and 99.3% (C4.5) [5]. Moreover, [6]
modeled weekly rainfall with weather variables using ANN and produced higher predic-
tion accuracy than multiple linear regression model. The summer precipitation patterns
over eastern China were modeled using multinomial logistic regression (MLR) by [7] and
gained a prediction accuracy range of (60–70%). Authors of [8] compared several machine
learning models in classifying month of a year as dry or wet. The rainfall classification
carried out by [9] concluded that Decision Trees and Random Forests could perform well
even with a low proportion of training data. A similar study conducted by [10] extracted
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the Adaboost algorithm, which produced F1-score of 0.9726. Authors of [11] carried out
rainfall classification addressing the class imbalance through over and under-sampling
techniques, and the results indicated varying performance with different inputs generated
by resampling techniques.

Our study employed several cost-sensitive machine learning models, including Penal-
ized SVM and Complement Naïve Bayes followed by a resampling technique to address the
natural rarity of extreme rainfall events. Prior to that two spatial input variables were gen-
erated by modeling satellite data with deep learning method (CNN) and rainfall at nearby
rain gauging stations with Spatial Kriging. Therefore, the study focused on three solutions
proposed by the literature [12] for imbalance learning. Moreover, we have performed a
comparative study between machine learning and deep learning models suggested by
many researchers [11,12].

The next section describes the materials and methods used during the study while
Sections 3 and 4 line up the results and discussion, and conclusions, respectively.

2. Materials and Methods
2.1. Description of Data

The weather data was obtained from the Meteorology Department of Sri Lanka based
on the Kalu River basin over the period from 2015 to 2019. It includes daily data on
28 variables including rainfall at target rain gauging station (Rathnapura), rainfall of six
nearby gauging stations, relative humidity, mean sea level pressure, wind speed, tempera-
ture, sunshine hours, evaporation, and Southern Oscillation Index. Additionally, the study
collected daily satellite images (with a size of 500 × 512 pixels) covering the river basin
from China Meteorological Administration National Satellite Meteorological Center for the
same time period.

2.2. Methods

The main objective of the study is to forecast rainfall occurrences from highly im-
balanced spatiotemporal time series data by using machine learning and deep learning
methods. Initially, the rainfall classes needed to be identified. Therefore, with the cutoff
levels established by Meteorology Department of Sri Lanka and a comparison of flood
occurrence with respect to rainfall at Rathnapura, the rainfall values were categorized into
three classes, ‘No rainfall’, ‘Normal rainfall’, and ‘Extreme rainfall’. Following the norm of
the Department of Meteorology, Sri Lanka, the cutoff level for extreme events was set at
110 mm of rainfall. Then, the methodology illustrated in Figure 1 was carried out.
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The Spatial Kriging was applied to predict current day (t) rainfall at Rathnapura using
current day rainfall values of six nearby stations to incorporate spatial correlation between
nearby stations and target station to final model. The previous day (t − 1) satellite image
was modeled to predict the current day (t) rainfall class through CNN model. Then, the
predicted rainfall class of the day t with the predicted rainfall value of the same day were
brought as predictor variables to the final dataset along with other selected variables. The
values of these predictor variables of last three consecutive days (t, t − 1, t − 2) were fed
into six classifiers from different model families (Linear Classifier, Ensemble, and deep and
sequential learning) for forecasting next day (t + 1) actual rainfall class of target variable or
the response variable.

2.2.1. Spatial Kriging

Let the rainfall value in Rathnapura on a particular day j be yj. In Spatial Kriging
estimates of yj, ŷj is modeled through the rainfall values of m neighboring sample locations
Xi, i.e., Z(Xi). It gives an optimal linear combination of Z(Xi) with weights wi, which are
taken according to covariance values [13].

ŷj = k +
n

∑
i=1

wiZ(Xi) = k + wTZ (1)

2.2.2. Multi-Layer Perceptron (MLP)

MLP is a feed forward neural network that consists of three types of layers, the input
layer, hidden layer (s), and output layer [14]. Let us consider a MLP model (see Figure 2)
with one hidden layer.

Eng. Proc. 2023, 39, 6 3 of 10 
 

 

 

Figure 1. Ensemble Spatiotemporal Data Mining Approach. 

2.2.1. Spatial Kriging 

Let the rainfall value in Rathnapura on a particular day 𝑗 be 𝑦𝑗. In Spatial Kriging 

estimates of 𝑦𝑗, 𝒚�̂� is modeled through the rainfall values of 𝑚 neighboring sample lo-

cations 𝑋𝑖, i. e., 𝑍(𝑋𝑖). It gives an optimal linear combination of 𝑍(𝑋𝑖) with weights 𝑤𝑖 , 

which are taken according to covariance values [13]. 

𝒚�̂� =  𝑘 +  ∑ 𝑤𝑖

𝑛

𝑖=1

𝑍(𝑋𝑖) = 𝑘 +  𝑤𝑇𝒁 (1) 

2.2.2. Multi-Layer Perceptron (MLP) 

MLP is a feed forward neural network that consists of three types of layers, the input 

layer, hidden layer (s), and output layer [14]. Let us consider a MLP model (see Figure 2) 

with one hidden layer. 

 

Figure 2. A multilayer perceptron model with one hidden layer. 

Here, the 𝑋𝑗 is the input to the 𝑗𝑡ℎ neuron of the input layer, the 𝑤𝑖𝑗
(1) is the weight 

of the link connecting 𝑗𝑡ℎ neuron of the input layer to 𝑖𝑡ℎ neuron of the hidden layer, 𝑏𝑖 

is the bias associated with the 𝑖𝑡ℎ neuron of the hidden layer, and ∅(1) is the activation 

function associated with the hidden layer. Then, the net output from 𝑖𝑡ℎ neuron of the 

hidden layer is given by ℎ𝑖 (see Equation (2)). 𝑤𝑖𝑗
(2) is the weight of the link connecting 

𝑖𝑡ℎ neuron of the hidden layer to 𝑗𝑡ℎ neuron of the output layer, 𝑏𝑗 is the bias associated 

Figure 2. A multilayer perceptron model with one hidden layer.

Here, the Xj is the input to the jth neuron of the input layer, the wij
(1) is the weight of

the link connecting jth neuron of the input layer to ith neuron of the hidden layer, bi is the
bias associated with the ith neuron of the hidden layer, and ∅(1) is the activation function
associated with the hidden layer. Then, the net output from ith neuron of the hidden layer
is given by hi (see Equation (2)). wij

(2) is the weight of the link connecting ith neuron of the
hidden layer to jth neuron of the output layer, bj is the bias associated with the jth neuron
of the output layer, and ∅(2) is the activation function associated with the output layer.
In this case, j = 1. The output of that jth neuron of the output layer (or, in our case, the
final rainfall prediction at Rathnapura by MLP) will be ŷj [15]. Since the network is fully
connected, each unit has its own bias, and there is a weight for every pair of units in two
consecutive layers. Then, the MLP network computations can be written as:

hi = ∅(1)
(
∑i w(1)

ij Xj + bi

)
Here, i = 1, 2, 3, 4 (2)
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ŷj = ∅(2)
(
∑i w(2)

ij hi + bj

)
Here, i = 1, 2, 3, 4 (3)

2.2.3. Long Short-Term Memory (LSTM)

LSTM has four neural network layers interacting in a very special way. Its memory
cell consists of a forget gate, input gate, and output gate [16].

As shown in Figure 3, the output of the last moment and current input value are fed
into the forget gate to obtain the following output at the forget gate.

ft = σ
(

w f .[ht−1, xt] + b f

)
(4)

where ft ∈ (0, 1), w f —weight at forget gate, b f —bias at forget gate, xt− current input
value, ht−1—output at previous moment. Then, the same previous output and current
input value are inputted to the input gate, and the output value and candidate cell state at
the input gate are calculated as below.

it = σ(wi .[ht−1, xt] + bi) (5)

C̃t = tanh(wc .[ht−1, xt] + bc) (6)

where it ∈ (0, 1), wi—weight at input gate, bi—bias at input gate, wc—weight at candi-
date input gate, bc—bias at candidate input gate. Update the current cell state using the
following formulae.

Ct = ft ∗ Ct−1 + it ∗ C̃t (7)
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The ht−1 and xt are then fed into output gate at time t and obtain output Ot at output
gate as follows. Here, wo—weight at output gate and bo—bias at input gate.

Ot = σ(wo .[ht−1, xt] + bo) (8)

Finally, the output of the LSTM was obtained using the current cell state and output at
the output gate using the following formulae.

ht = Ot ∗ tanh(Ct) (9)

2.2.4. Convolutional Neural Network (CNN)

CNN is very popular for image processing and computer vision. It consists of three
layers as seen in Figure 4. Convolution layer performs linear convolution operation, and
the features of the data are extracted. Since the feature dimensions are very high, a pooling
layer is added after the convolution layer. To make a final forecast, a fully connected (FC)
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layer (or dense layer) is added, and inputs to this layer are the flattened features resulted
from convolutional and pooling layers [18,19].
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2.2.5. Random Forest (RF)

RF is known as a supervised ensemble learning method. The method constructs a
multitude of decision trees with controlled variation at the training phase. Then, using
bagging, each tree in the ensemble is constructed (with sample with replacement) from
training data. In the classification problem, each tree in ensemble is a base classifier to
identify the class of the unlabeled observation. Through voting of each classifier for their
predicted classes, the final class is obtained computing the majority votes [20,21].

2.2.6. Support Vector Machine (SVM)

SVM classifier finds a hyperplane to segregate the nodes for classification. The follow-
ing optimization problem is solved when deriving the optimal hyperplane which separates
two classes.

Minimize
w, b,ε j

1
2

wTw + C ∑
j

ε j (10)

Subject to yj

(
wTΦ

(
Xj
)
+ b
)
≥ 1− ε j (11)

ε j ≥ 0 (12)

where yj is the class label, w is the weights vector, Xj is the input feature vector, Φ is the
transformation function, ε j is the degree of misclassification corresponding to Xj, C is the
regularization parameter and b is the bias.

The optimal hyperplane (a maximum marginal hyperplane (MMH)) is learnt by
training the samples using several kernel functions such as linear, radial basis function
(rbf) and polynomial (poly) [22]. The Penalized SVM (PSVM or Cost-sensitive SVM) is a
modification of SVM that weighs the margin proportional to the class importance which
can be applied to an imbalanced dataset [23,24].

2.2.7. Naïve Bayes (NB)

The Naïve Bayes Algorithm is based on the Bayes Theorem of probability.

Pr(C|X) =
Pr(X|C)Pr(C)

Pr(X)
(13)
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where, Pr(C|X): The posterior probability of the class of interest given predictor, Pr(C):
The prior probability of the class of interest, Pr(X|C): The probability of predictor given
class C, and Pr(X): The prior probability of predictor.

NB method calculates the probability of an observation belonging to a certain class.
The Complement Naïve Bayes (CNB) method computes the probability of the observation
belonging to all the classes. Thus, CNB is more suitable in dealing with imbalanced
datasets [25].

2.2.8. Multinomial Logistic Regression (MLR)

Multinomial Logistic Regression is the generalization of Logistic regression which
allows more than two categories of output variable. It also obtains maximum likelihood
estimation to evaluate the probability of categorical membership [26]. The formula of MLR
is as follows:

log

[
Pri(Y)
Prj(Y)

]
= αi + βT

i X (14)

where Pri(Y) is the probability of Y in ith class, Prj(Y) is the probability of Y in jth class, αi

is the intercept, βT
i is the vector of covariates for the ith class of the output variable Y, and

X is the input feature vector [27].

2.3. Imbalanced Learning

The data mining techniques will produce biased classification if the dataset is imbal-
anced [11]. Moreover, it can lead to a problem in ignoring the minority class entirely in the
case where the predictions on the minority class are most important. This is a major issue
found in rainfall forecasting. Certain methodologies can deal with the class imbalance of
the data.

2.3.1. Cost—Sensitive Learning

This tactic uses penalized learning algorithms which give higher misclassification
costs (or weights) for instances of the minority class and lower misclassification costs for
the majority class [12,24].

2.3.2. Resampling Techniques

The resampling techniques are applied to obtain more balanced datasets. In this study,
Synthetic Minority Oversampling Technique (SMOTE) which synthesizes new samples
from the minority class was applied.

2.4. Model Evaluation

The metrics, Accuracy, Precision, Recall and F1-Score were used to evaluate the
classification models, and the Spatial Kriging model results were evaluated using Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), and R2 value.

Firstly, the cost-sensitive approach was followed in rainfall class prediction. Through
the model evaluation results, the best set of models were chosen to apply the resampling
technique. The final evaluation based on resampling was taken into consideration in
selecting the best model for rainfall classification. Before applying the classification models,
all the input variables were normalized. The machine learning and deep learning algorithms
were run in Python.

3. Results and Discussion

As mentioned previously, initially the Spatial Kriging method was applied to find the
daily rainfall prediction at Rathnapura gauging station.

The results shown in Table 1 indicate that the Spatial Kriging model fitted using the
rainfall values of nearby stations cannot be solely used to explain the variation of the
rainfall at target station, yet, they have an influence on the target station’s rainfall.
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Table 1. Performance of Spatial Kriging method.

Metric RMSE MAE R2

Error 16.2 6.64 30.3%

Then, the previous day’s (t − 1) satellite image was modeled with the current day’s
(t) rainfall occurrence in Rathnapura using the CNN model. The best model parameters
obtained via 60 trials of training the models CNN, MLP and LSTM are presented in Table 2.

Table 2. Parameter specification of CNN, MLP and LSTM models.

Parameters CNN MLP LSTM

Activation function Softmax Softmax Softmax
Epochs 50 50 50
Number of hidden layers 7 2 1
Number of neurons in final
dense function 3 3 3

Batch size 72 72 72
Kernel size (3,3) - -
Learning rate 0.01 0.01 0.01
Optimizer Adam Adam Adam

Loss Function Categorical Cross
Entropy

Categorical Cross
Entropy

Categorical Cross
Entropy

The CNN model showed 64.9% of Accuracy and Recall with 59.7% of Precision and
52.8% of F1-Score. The results also suggest the same conclusion produced by the Spatial
Kriging method.

However, applying Spatial Kriging reduced the dimensions (number of input vari-
ables) of the final model. This method along with satellite images analysis are set to
incorporate the spatial variation of the rainfall data to the final model.

The predictions obtained from the above two spatial models were incorporated as new
predictor variables to the final dataset. Then, there were 23 predictor variables. The values
of the past three days (t, t − 1, t − 2 on (2)) spatial correlation between nearby stations
and target station to final model. t − 2) of each predictor variables were modeled with the
next day (t + 1) actual rainfall class since through a preliminary data analysis we could
identify that the past three days rainfall values have much impact on the next day (t + 1)
rainfall occurrence.

To address the class imbalance, cost-sensitive models were applied. The entire data set
was split as 80% for training and 20% for testing. For the training set, Repeated Stratified
5—Fold Cross Validation (which repeats the cross-validation procedure multiple times)
was applied to further address the class imbalance problem. Tables 3 and 4 show model
performance.

Table 3. The performance of cost-sensitive models in training sets.

Metric

Cost-Sensitive Model

PSVM
(Kernel = rbf)

PSVM
(Kernel = Poly) CNB MLR RF MLP LSTM

Accuracy 0.75 0.73 0.71 0.74 0.73 0.73 0.73
Recall 0.75 0.74 0.72 0.74 0.74 0.74 0.74
Precision 0.75 0.73 0.71 0.74 0.73 0.73 0.73
F1-Score 0.75 0.73 0.71 0.73 0.73 0.73 0.73
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Table 4. The performance of cost-sensitive models in test set.

Metric

Cost-Sensitive Model

PSVM
(Kernel = rbf)

PSVM
(Kernel = poly) CNB MLR RF MLP LSTM

Accuracy 0.71 0.77 0.68 0.81 0.76 0.70 0.71
Precision 0.72 0.75 0.75 0.79 0.75 0.72 0.75
Recall 0.71 0.77 0.68 0.81 0.76 0.70 0.71
F1-Score 0.72 0.76 0.71 0.78 0.75 0.71 0.73

The training and testing performances indicate that cost-sensitive SVM, Random
Forest, Multinomial Logistic Regression, and LSTM models have performed better in terms
of metrics, especially precision, recall, and F1-score, which are more suitable in evaluating
class-imbalanced problems [28]. The selected models depict more than 70% Accuracy,
Precision, Recall, and F1-Score.

Then, for the selected models, the SMOTE resampling technique was applied. The
performance was evaluated after refitting the balanced dataset using the selected best set
of models. The following Tables 5 and 6 illustrate the final performance results.

Table 5. The performance of cost-sensitive resampled models in training set.

Metric

Cost-Sensitive Resampled Model

PSVM
(Kernel = rbf)

PSVM
(Kernel = Poly) MLR RF LSTM

Accuracy 0.82 0.83 0.80 0.87 0.77
Precision 0.82 0.82 0.79 0.87 0.78
Recall 0.82 0.83 0.80 0.87 0.79
F1-Score 0.82 0.83 0.80 0.87 0.77

Table 6. The performance of cost-sensitive resampled models in test set.

Metric

Cost-Sensitive Resampled Model

PSVM
(Kernel = rbf)

PSVM
(Kernel = Poly) MLR RF LSTM

Accuracy 0.82 0.82 0.79 0.87 0.78
Precision 0.82 0.83 0.79 0.88 0.79
Recall 0.82 0.83 0.80 0.88 0.79
F1-Score 0.82 0.83 0.79 0.88 0.78

It can be observed that after two operations, the performance of all selected models
has improved. Out of them, the Random Forest method gives the best and consistent
performance in both the training set and in the final evaluation (in test set) of the selected
models (nearly 88% of Accuracy, Precision, Recall, and F1-Score).

Overall, the study results indicate the importance of incorporating spatial variation
of the rainfall data in predicting future events and highlight the effectiveness of step-wise
imbalance learning to obtain consistent and more accurate predictions which could not be
attained in some previous studies.

4. Conclusions

In this study, we proposed a novel ensemble spatiotemporal data mining approach to
forecast rainfall occurrence at the Rathnapura gauging station. Spatial Kriging and a Deep
Learning model (CNN) were employed to capture the spatial variation over the selected
grid. The temporal variation of the rainfall data was brought to the model by modeling
with the three past consecutive days’ values of the variables. Five cost-sensitive models
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were further improved to address the imbalanced problem found in rainfall classes through
a resampling technique. The final performance summary emphasizes the outperformance
of the cost-sensitive resampled Random Forest method (nearly 88% of accuracy, precision,
recall, and F1-score) in forecasting future rainfall occurrences.

During the study, we found the complexity of working with high number of predictor
variables. Therefore, our future studies are expected to enhance further by focusing on
feature selection and application of dimension reduction prior to the model application.
Collecting data for an extended period (e.g., 30 years) and selecting novel approaches will
also be taken into consideration when dealing with highly imbalanced rainfall data.
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