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Abstract: The use of neuroimaging to predict individual and population-wide behaviors, also known
as neuroforecasting, was long applied to estimate movie popularity. Only recently, EEG-based neural
synchronization, which is indicative of engagement, was found as a valid predictor of the listening
behavior of the population. However, the population’s evaluative responses to the songs were not
incorporated. To fill this void, this study explored whether neural synchrony can also be related
to likes, dislikes and comments for the same songs on YouTube more than two years after their
release. In this way, we aimed to separate passive engagement (i.e., listening) from active engagement
(evaluating). The results showed that neural synchrony was a significant predictor of the likes and
comments on YouTube, even after controlling for explicit liking ratings from the lab study. In contrast,
frontal alpha asymmetry did not predict YouTube likes. Thus, engagement as represented by neural
synchronization could be a valuable tool for predicting active as well as passive engagement with
entertainment products. This underlines the value of neural similarity in predicting the impact of
music and videos before their true effect in the crowd can be known.

Keywords: neuroforecasting; neuromarketing; neural synchrony

1. Introduction

Traditionally, when investigating human decision-making, an individual’s previous
choices were the best indicator of future ones. However, more recently, it was supposed
that the choices humans make can be linked to changes in brain activity. Due to the contin-
uous advances in brain-imaging design and analysis, the use of brain activity to predict
individual and population-wide choices emerged in recent years. This prediction is also
called neuroforecasting [1] and can be applied in a variety of domains including consumer
behavior, neuromarketing, health-related choices and financial decision-making [2–5]. Re-
searchers tried to pinpoint neural dynamics that predict individual and population-wide
behaviors, but with mixed results. In a study by Genevsky et al. [6], the neural activity
in the reward center in the brain of only 30 human participants was predictive of the
market-level crowdfunding outcomes weeks later, while the behavior of those participants
did not provide any predictive value for market-level behavior.

Within this line of research, Berns and Moore [7] examined the brain activity in the
reward center of their subjects during listening to music, and they were able to correlate
these neural dynamics to the sales data of the music albums. Later studies [8] again found
that music popularity could be forecasted with brain activity, but these implemented a
metric of brain activity called neural synchrony.

The first notice of neural synchronization in the context of predicting behavior was in
2004, when Hasson et al. [9] identified similar brain responses across the subject pool while
they were watching a movie. This similarity was not only found in visual and auditory
cortices (where it could be expected due to the audiovisual input of the movie), but frontal
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and parietal regions also showed synchronized responses. This indicates that brain regions
that are associated with narrative and emotional processing were engaged while watching
the movie in a similar way across participants. Engagement with the narrative is a common
definition of the neural synchronization during natural stimuli [10]. Several studies showed
that scrambling a story, movie or music part significantly decreased the similarity in brain
patterns between individuals [11,12]. This metric of synchronized brain activity between
individuals was shown to be indicative of popularity of movies [13,14], social buzz [15]
and recall [13,16]. Other studies, such as Chan et al. [17], showed that this metric is not
only related to passive engagement but also evaluative responses.

Next to neural synchrony, another metric related to personal preferences should be
considered as well; frontal alpha asymmetry (FAA) is a popular metric in neuromarketing
and was linked to personal liking in several studies [18–20]. Moreover, FAA was a signifi-
cant predictor in the study of Leeuwis et al. [8]; on an individual level, the FAA during a
song was predictive of the individual ratings provided afterwards.

Thus, to capture the predictive value of neural measurements of evaluative responses
on a population-level, this study presents an accompanying analysis to Leeuwis et al. [8],
who showed that the number of plays on Spotify could be predicted by this neural marker.
To elaborate the finding that passive engagement in the form of consuming the content
could be predicted, we added the predictive value of neural synchrony for active engage-
ment in the form of evaluative responses to the songs; we inferred the number of likes,
dislikes and comments on YouTube and investigated whether neural markers of synchro-
nization and frontal alpha asymmetry within a small group of individuals could be related
to this evaluative engagement of the crowd as well.

2. Materials and Methods

Data for the experiment were obtained from Leeuwis et al. [8], where 30 participants
(23 female, 7 male; Age M ± SD = 26.87 ± 10.80) listened to fragments of music tracks on
two albums that were just released a few days prior to the experiment. During listening
to the 24 s excerpt of each track, brain activity was recorded on nine EEG channels. After
listening to a track, participants rated the track on a 1–5 Likert scale before continuing to
the next one. The order of the albums was counterbalanced, and the series of tracks were
randomized between subjects too.

Passive engagement was quantified by the number of views on YouTube. Four de-
pendent variables (DV) of active engagement on YouTube were evaluated 2 years and
10 months after the release of the albums; likes and comments were directly assessed from
YouTube.com. Dislikes were obtained with the Google Chrome extension Return to Dislikes
(https://returnyoutubedislike.com/ accessed on 23 February 2023). Additionally, likes of
the song YouTube were corrected by the times the song was played on YouTube, such that
this dependent variable was reflecting the number of likes per play of the video.

The EEG data were processed by Leeuwis et al. [8]. After pre-processing, power
spectral density was calculated in the alpha frequency range (8–12 Hz) and this data in the
central electrodes (C3, Cz, and C4) were pairwisely correlated between all participants for
each track separately to calculate neural synchrony for each track. Moreover, frontal alpha
asymmetry (FAA) was calculated from the F3 and F4 electrodes. More details about the
processing can be found in Leeuwis et al. [8].

Outliers were removed when their score on the dependent variable exceeded the
boundary of 2.5 SD above or below the mean and by Mahalanobis distance on both the
explicit ratings by participants in the lab and neural measurements.

Linear regression models were fitted to assess the predictability of the neural measure-
ments. As noted by Boksem and Smidts [5], when assessing the predictability of neural
measures, their value should be above and beyond the traditional methods (e.g., stated
preferences) to be relevant. Therefore, for each DV, a baseline model was created as H0 to
be compared to models H1 and H2 incorporating brain activity measures:

H0: DV~Likes Lab + Music Video (y/n)

https://returnyoutubedislike.com/
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H1: DV~Likes Lab + Music Video (y/n) + Neural Synchrony

H2: DV~Likes Lab + Music Video (y/n) + Frontal Alpha Asymmetry

This meant that the basic (H0) model incorporates the average explicit liking of the
respondents in the lab and the fact that a track was accompanied by a music video as a
dichotomous factor. It is important to note here that the participants in the lab did not
see the music video, they only listened to musical excerpts of the songs while the desktop
screen was black. The DV was one of the five YouTube variables mentioned earlier: the
likes, dislikes, number of comments, the likes-per-view ratio, or likes-per-dislike ratio.

Consequently, the H0 model was then elaborated by adding neural synchrony or
frontal aslpha asymmetry to the model and comparing the explained variance with an
ANOVA test between the models. For the DV number of views, only H1 was compared to
H0, as the previous research already showed that frontal asymmetry was not predictive of
passive engagement in this context [8]. The assumptions underlying linear regression were
tested with a Shapiro–Wilk test for normality of residuals and Breusch–Pagan test checking
the assumption of constant variance [21]. Linearity assumptions were checked visually.
Numerical variables were scaled before inputted to the model.

Investigating four dependent variables, and for each comparing two models to H0,
resulted in 8 statistical tests. Moreover, the model for views was compared only on neural
synchrony, making the total of 9 tests. Following Bonferroni correction, significance levels
for these tests were set at 0.006.

Data acquisition, pre-processing, PSD and FAA calculation was carried out using
iMotions (2019). The neural synchrony was calculated using R (R Core Team, 2019), and
statistical analysis was also performed in R (R Core Team, 2022).

3. Results

One track exceeded the 2.5 SD boundary on likes and comments and was also identi-
fied as an outlier in Mahalanobis distance. This track was removed from analysis, which
left 23 tracks in the data for analysis (liking in lab before removal: M = 2.67, SD = 0.28;
liking in lab after removal: M = 2.66, SD = 0.28; likes YouTube before removal: M = 64.73,
SD = 63.18; likes YouTube after removal: M = 56.58, SD = 50.09). Models without outlier
removal did not meet the assumption of normality of errors; thus, all models reported here
had the outlier removed.

3.1. YouTube Views

To start with active engagement, we applied the model of Leeuwis et al. [8] on the
passive engagement on YouTube. To correct for normality of model errors, the YouTube
views were log transformed before they were put into the model. Here, as well, neural
synchrony added predictive value to the baseline model (F(20) = 8.57, p = 0.009). The H0
model predicted 29.05% of the views (R2

adj = 0.291, F(2,20) = 5.50, p = 0.012), while the model

incorporating neural measures predicted 48.34% of the views (R2
adj = 0.483, F(2,20) = 7.86,

p = 0.001).

3.2. YouTube Likes

The H0 model significantly predicted the number of likes on YouTube (R2
adj = 0.573,

F(2,20) = 15.76, p < 0.001), where the fact that the track was released with an accompanying
music video was significantly predictive (beta = 1.59, t(20) = 5.38, p < 0.001) but the average
subjective liking of the track by the participants in the lab was not (beta = 0.26, t(20) = 1.65,
p = 0.11), although an increasing line was observed (Figure 1).
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Figure 1. The distribution of liking scores in the lab (1 to 5 Likert scale) and the likes of that track on 
YouTube (×1000) almost three years later. The blue line indicates the fitted regression line. The gray 
area indicates the confidence interval. The tracks that are accompanied by a music video on YouTube 
are indicated by blue triangles (please note that subjects in the lab only listened to an excerpt of the 
track and did not see the music video). 

Adding neural synchrony to this model of YouTube likes increased the predictive 
value (F(20) = 9.68, p = 0.006). The predicted variance was improved to 70.21% 
(R =0.7038, F(3,19) = 18.28, p < 0.001). The predictive value of the stated preferences in 
the lab remained insignificant (beta = 0.13, t(19) = 1.09, p = 0.29), while the fact that the 
track was released with an accompanying music video was significantly predictive (beta 
= 1.46, t(19) = 5.80, p < 0.001), as well as neural synchrony (beta = 0.38, t(19) = 3.11, p = 0.006) 
(Figure 2). 

 
Figure 2. The neural synchrony scores for each track in the lab and the likes (×1000) of that track on 
YouTube almost three years later. The blue line indicates the fitted regression line. The gray area 
indicates the confidence interval. The tracks that are accompanied by a music video on YouTube are 
indicated by blue triangles (please note that subjects in the lab only listened to an excerpt of the 
track and did not see the music video). 

Predicting the evaluative responses on YouTube by the stated preferences in the lab 
and the accompanying frontal alpha asymmetry measures, provided a significant model 
(R  = 0.553, F(3,19) = 10.08, p < 0.001), although no improvement in predictive value was 
achieved beyond the model incorporating only the lab-based liking (F(20) = 0.120, p = 0.73). 

  

Figure 1. The distribution of liking scores in the lab (1 to 5 Likert scale) and the likes of that track on
YouTube (×1000) almost three years later. The blue line indicates the fitted regression line. The gray
area indicates the confidence interval. The tracks that are accompanied by a music video on YouTube
are indicated by blue triangles (please note that subjects in the lab only listened to an excerpt of the
track and did not see the music video).

Adding neural synchrony to this model of YouTube likes increased the predictive value
(F(20) = 9.68, p = 0.006). The predicted variance was improved to 70.21% (R2

adj = 0.7038,
F(3,19) = 18.28, p < 0.001). The predictive value of the stated preferences in the lab remained
insignificant (beta = 0.13, t(19) = 1.09, p = 0.29), while the fact that the track was released
with an accompanying music video was significantly predictive (beta = 1.46, t(19) = 5.80,
p < 0.001), as well as neural synchrony (beta = 0.38, t(19) = 3.11, p = 0.006) (Figure 2).
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Figure 2. The neural synchrony scores for each track in the lab and the likes (×1000) of that track
on YouTube almost three years later. The blue line indicates the fitted regression line. The gray area
indicates the confidence interval. The tracks that are accompanied by a music video on YouTube are
indicated by blue triangles (please note that subjects in the lab only listened to an excerpt of the track
and did not see the music video).

Predicting the evaluative responses on YouTube by the stated preferences in the lab
and the accompanying frontal alpha asymmetry measures, provided a significant model
(R2

adj = 0.553, F(3,19) = 10.08, p < 0.001), although no improvement in predictive value was
achieved beyond the model incorporating only the lab-based liking (F(20) = 0.120, p = 0.73).

3.3. YouTube Dislikes

The same comparisons were also performed for dislikes on YouTube. To meet the
assumptions of homogeneity of variance, the dislikes were log transformed. The H0 model
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significantly predicted the number of dislikes on YouTube (R2
adj = 0.553, F(2,20) = 14.60,

p < 0.001), where the fact that the track was released with an accompanying music video
was significantly predictive (beta = 1.53, t(20) = 5.04, p < 0.001) but the average liking of
the track by the participants in the lab was not (beta = 0.28, t(20) = 2.00, p = 0.06). Adding
neural synchrony to this model increased the predictive value (F(20) = 7.39, p = 0.014),
although not significantly when considering Bonferroni correction. The predicted variance
was improved to 66.11% (R2

adj = 0.661, F(3,19) = 15.30, p < 0.001). The predictive value of the
stated preferences in the lab remained insignificant (beta = 0.19, t(19) = 1.50, p = 0.15), while
the fact that the track was released with an accompanying music video was significantly
predictive (beta = 1.40, t(19) = 5.22, p < 0.001), as well as neural synchrony (beta = 0.35,
t(19) = 2.72, p = 0.014). Interestingly, the positive value points out that neural synchrony
was positively correlated to likes as well as dislikes. This indicates that it was a predictor of
engagement rather than the direction of this engagement. Frontal alpha asymmetry did not
add any predictive value to the H0 model (F(20) = 0.43, p = 0.52; R2

adj =0.540, F(3,19) = 9.60,
p < 0.001).

3.4. YouTube Comments

Similarly, we further examined the predictability of YouTube comments on each
video. To meet the assumption of normality of model errors, the comments were log
transformed before putting into the model. The H0 model significantly predicted the
number of comments on YouTube (R2

adj = 0.616, F(2,20) = 18.7, p < 0.001), where the fact
that the track was released with an accompanying music video was significantly predictive
(beta = 1.71, t(20) = 6.09, p < 0.001) but the average liking of the track by the participants in
the lab was not (beta = 0.07, t(20) = 0.50, p = 0.62).

Adding neural synchrony to this model increased the predictive value (F(20) = 11.23,
p = 0.003), where the predicted variance was improved to 74.61% (R2

adj = 0.746, F(3,19) = 22.55,
p < 0.001). The predictive value of the stated preferences in the lab remained insignificant
(beta = −0.03, t(19) = −0.28, p = 0.78), while the fact that the track was released with an
accompanying music video was significantly predictive (beta = 1.58, t(19) = 6.79, p < 0.001),
as well as neural synchrony (beta = 0.38, t(19) = 3.35, p = 0.003).

Adding frontal alpha asymmetry to this model did not increase the predictive value
(F(20) = 0.20, p = 0.659), the model only explained 60.0% of the variance (R2

adj = 0.600,
F(3,19) = 12.01, p < 0.001).

3.5. Likes Per View Ratio

The H0 model predicting likes-per-view ratio explained only 20.02% of the variance
(R2

adj = 0.202, F(2,20) = 3.79, p = 0.04). In this case, adding neural synchrony did not add
predictive power (F(20) = 0.20, p = 0.66), as the model explained 16.88% of the variance
(R2

adj = 0.169, F(3,19) = 2.49, p = 0.09). FAA did also not improve the model (F(20) = 0.36,

p = 0.56), as the model explained 17.57% of the variance (R2
adj = 0.176, F(3,19) = 2.56,

p = 0.09).

4. Discussion

In investigating the use of neuroimaging techniques to predict population-wide evalu-
ative responses to music on YouTube, we explored the predictive value of neural synchrony
and frontal alpha asymmetry. The study presented an analysis of data from a previous
experiment by Leeuwis et al. [8], where the neural markers of synchronization and frontal
alpha asymmetry in response to music tracks of two new music albums were recorded.
The results showed that neural synchrony had predictive value above and beyond stated
preferences for evaluative responses by the population. The neural similarity was a positive
factor in predicting likes as well as dislikes and comments. This indicates the potential
usefulness of neural synchrony not only in predicting passive engagement (consuming the
content) but also active engagement (evaluating the content) with music tracks, regardless
of the direction of the evaluation. No such results were found for frontal alpha asymmetry.
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To further examine the active engagement measurement of likes, we corrected those by
the number of times the videos were played and found that the predictive value was not
present anymore.

While one could argue that the latter could be expected since the previous analysis by
Leeuwis et al. [8] showed that the number of times the song was played was significantly
predicted by neural synchrony, we believe this analysis of evaluative responses shows a new
aspect of engagement that was not covered in previous explorations of neural synchrony.
The previous analyses by Berns and Moore [7] and Leeuwis et al. [8], where the popularity
was derived from album sales and online streams, respectively, were relating more to
passive engagement. In this dataset, we validated once again that passive engagement was
better predicted when neural synchrony was included in the model, although the explained
variance was lower than the results observed for Spotify plays [8]. This could have to do
with a difference platform engagement or the fact that these data were gathered two years
later compared to the Spotify data.

Our study shows that the number of likes was not significantly predicted when
corrected for the total number of views, which indicates that the number of views could
be the most important contributor to the number of likes on the platform. However, the
number of views could not be known beforehand, making it not feasible for popularity
prediction. The other factors explored in the data, namely the neural correlates and the fact
that the song is released with music video can be established almost immediately after the
release of the song, enabling prediction of the evaluative responses straight away.

Previous studies that found that similarity in brain responses was indicative of evalua-
tive responses [17] were more focused on market review panelists. This is different from
YouTube video (dis)likes in the sense that for the latter, the likes are provided by individ-
uals that consumed the content on a voluntary basis while the panelists are intentionally
exposed to the stimuli. Ideally, in future research, we would correct the likes not for the
total number of plays but by the number of individuals that played the video. This may
present a more realistic scenario as it may be that a small group of individuals (assuming
this will be the likers) is responsible for a great lot of the plays [22].

The fact that frontal alpha asymmetry did not add extra explanatory value could be
explained by the fact that this metric is mostly found to be indicative of individual liking [8,18,19].
Moreover, the catchiness of music is not necessarily depending on positive emotions elicited;
irritating tunes stick particularly well [23], explaining why approach may not be sufficiently
predictive of passive or active engagement with the content. However, some studies also
found generalizations out-of-sample to be correlated to FAA measurements; Shestyuk
et al. [24] showed that frontal asymmetry in a combination of alpha and beta bands was
predictive of TV viewership and social media engagement.

In discussing these measures, it should be taken into account that we discussed the
brain activity measures of unimodal stimuli; only sound. For FAA, this was shown to
elicit weaker activity patterns than multimodal stimuli that most of the previous studies
employed [25]. Neural synchronization may also be diminished due to this unimodal
approach, since engagement in general was higher with multimodal design [26].

Another limitation of the study was the fact that only two music albums were incor-
porated as stimuli, which may not be representative of the wide variety of entertainment
media available. Future research could investigate the predictive value of neural metrics
in larger and more diverse stimulus sets. A replication with new music could provide
a valuable addition to this dataset. Moreover, the mediation variable of music videos,
social media campaigns or marketing budget were not accounted for but could have an
interesting effect on the predicted values of likes on YouTube.

Future research in this area could focus on tackling these limitations. By creating a full
image of all variables impacting entertainment popularity, the undisguised effect of neural
measure beyond all other could be explored. Moreover, replication of studies employing
neural synchrony is needed to strengthen the validity of this emerging metric. Especially
since various calculation methods exist, including different locations, frequency bands,
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neuroimaging techniques and algorithms in general. Moment-to-moment fluctuations
of neural synchrony may also provide an interesting metric for examination of entertain-
ment [11,27]. The field of neuroforecasting may also be expanded by the implementation
of more sophisticated prediction algorithms, machine learning or deep learning, which
generally improves prediction accuracies [28].

Our results underline that neuroforecasting has an additional value to surveys when
determining the success of entertainment types. Applications could include ranking songs
on an album to determine the marketing budget to put in each of them. Moreover, the
field can be broadened to other branches such as marketing, health and financial decision-
making where this metric could be used to indicate the engagement and predict the impact
of communication statements.

5. Conclusions

This work provided valuable insights into the potential usefulness of neuroforecasting
in predicting human behavior. The research findings suggest that neural synchrony may
have predictive value above and beyond stated preferences, indicating that brain activity
can be a useful tool in predicting not only population-wide passive engagement behaviors
but also active engagements; neural synchrony added value for predicting YouTube likes,
dislikes and comments almost three years after the release of the music tracks. Our results
showed a distinction between active and passive engagement and the potential of neural
synchrony to provide an indication of both types of interaction with the content. Thereby,
this work further contributes to the body of literature of neuroforecasting. Further research
in this field could have important implications for a variety of domains, including consumer
behavior, neuromarketing, health-related choices, and financial decision making.
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