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Abstract: This study extends previous work applying unsupervised machine learning to commodity
markets. The first article in this sequence examined returns and volatility in commodity markets.
The clustering of these time series supported the conventional ontology of commodity markets for
precious metals, base metals, agricultural commodities, and crude oil and refined fuels. A second
article used temporal clustering to identify critical periods in the trading of crude oil, gasoline, and
diesel. This study combines the ontological clustering of financial time series with the temporal
clustering of the matrix transpose. Ontological clustering, contingent upon the identification of
structural breaks and other critical periods within financial time series, is this study’s distinctive
contribution. Conditional, time-variant ontological clustering should be applicable to any set of
related time series, in finance and beyond.

Keywords: unsupervised machine learning; clustering; financial time series; commodities; energy;
fossil fuels

The sea is the land’s edge also, the granite
Into which it reaches, the beaches where it tosses
Its hints of earlier and other creation:
The starfish, the horseshoe crab, the whale’s backbone;
The pools where it offers to our curiosity
The more delicate algae and the sea anemone.

T.S. Eliot, “The Dry Salvages”, Four Quartets (1943) [1] (p. 36)

1. Introduction

This paper extends previous work using unsupervised machine learning to evaluate
commodity markets. “Clustering Commodity Markets in Space and Time” examined
returns and volatility in commodity markets [2]. That paper supported the conventional
ontology of commodity markets for precious metals, base metals, agricultural commodities,
and crude oil and refined fuels. These groupings emerged from the application of clustering
methods and a nonlinear manifold to the matrices formed by the concatenation of daily
logarithmic returns for individual commodities or conditional volatility forecasts based on
a GARCH(1, 1, 1) process.

A sequel to [2], “A Pattern New in Every Moment,” used temporal clustering to iden-
tify critical periods in energy-related commodity markets [3]. That article applied a suite of
clustering methods to the transpose of the time-series matrix evaluated in [2]. The temporal
clustering of financial markets reveals market events that can be readily interpreted as
shifts in volatility, cumulative logarithmic returns, or both. As applied to energy-related
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commodities trading during the first two decades of the twenty-first century, temporal
clustering isolated critical periods associated with wars, terrorist attacks, comprehensive
economic crises, and other disruptions in energy supply or demand (Figure 1).
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Figure 1. Cumulative logarithmic returns during critical periods for four oil and fuel commodi-
ties (dotted colored lines), with cumulative log returns on precious metals (solid gray line) as a
benchmark [3] (p. 41).

This study proposes further elaborations in unsupervised machine learning. By com-
bining the ontological (or spatial) approach to clustering of [2] with the temporal approach
of [3], this study makes its own distinctive contribution to the application of unsupervised
machine learning to financial time series. Ontological clustering, conditioned upon the
identification of structural breaks and other critical periods, should reveal information
about co-movement among asset classes and discrete assets as markets shift between
normal and extraordinary states. By focusing on critical periods identified by temporal
clustering, this study’s novel hybrid clustering method reveals the extent, if any, to which
the unconditional spatial ontology among financial assets changes under economic stress.

Together with its predecessor articles, this study expands the machine-learning toolkit
for time-series analysis to three methods: (1) ontological clustering, (2) temporal clustering,
and (3) the new hybrid method of conditional, time-variant ontological clustering. In
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principle, all three methods can be applied to any time series, in finance and beyond.
Indeed, future research applying unsupervised machine learning may address forecasting
tasks involving meteorology, air quality, and other environmental sciences.

This study contemplates the application of time-variant ontological clustering to
markets for crude and refined fossil fuels as well as related commodities. Energy-related
commodity markets are affected not only by background macroeconomic events, but also
by events specific to energy markets. Shocks to supply should be distinguished from shocks
to demand. Co-movement in prices for crude oil and refined fuel is asymmetrical insofar
as these markets respond differently to rising and falling prices. Finally, biofuel demand
affects markets for agricultural commodities that can provide human food or animal feed
in addition to serving as biofuel feedstocks.

2. Materials and Methods
2.1. Materials

This study marshals market data across a variety of commodity markets, ranging
from markets for crude oil, natural gas, and refined fuels to agricultural commodities
and precious and base metals. Agricultural commodities are both substitutes for and
complements to fossil fuels. Precious and base metals track inflation, consumer demand,
and other macroeconomic conditions.

• Raw energy commodities: crude oil (Cushing and Brent) and natural gas;
• Refined energy commodities: gasoline, diesel/gasoil, and heating oil;
• Agricultural commodities: corn, soybeans, and sugar;
• Precious metals: gold, silver, platinum, and palladium;
• Base metals: copper, tin, nickel, and aluminum.

These five categories comprise 17 distinct commodity markets. Those 17 markets,
in turn, are divided between six energy-specific markets and 11 commodity markets not
typically regarded as energy-related. Data used in this study were drawn from Datastream
and the United States Energy Information Administration. The data cover the period from
2000 to 2022.

Different combinations among commodity markets advance different research objec-
tives. For instance, their traditional contribution to portfolio hedging and diversification
enables precious metals to serve as a control variable for certain macroeconomic conditions,
such as inflation or flights to safe havens [4–6]. Perhaps surprisingly, oil itself serves as
a hedge, safe haven, and diversifier relative to conventional currencies during periods
of turbulence [7]. Base metals indicate industrial demand, especially during declines in
demand attributable to events exogenous to the business cycle, such as the COVID-19
pandemic [8].

Hypotheses anticipating asymmetric relationships between crude oil and refined
fuels may be evaluated with as few as two individual commodity series, such as Brent
or WTI and gasoline. Divergence between crude oil and natural gas prices may prove
especially revealing. Finally, agricultural commodity markets may reveal the impact, if any,
of renewable energy policies prescribing ethanol additives, E85 fuel, or biodiesel. Soft food
commodities, such as corn, cotton, and cocoa, demonstrated safe-haven properties during
the COVID-19 pandemic [9]. These crops are intriguingly diverse: whereas corn serves
as human food, animal feed, and a biofuel feedstock, cotton is both food and fiber. As a
component of sweets and a stimulant in its own right, cocoa serves more as a complement
to staple grains and oilseeds than as a substitute for those crops [10].

2.2. Methods

This study applies a broad variety of clustering methods to different subsets of these
commodity market time series. The clustering methods deployed in this study include
spectral clustering [11–13], mean-shift clustering [14], affinity propagation [15–17], hier-
archical agglomerative clustering [18], and k-means clustering [19]. A single method of
manifold learning—t-distributed stochastic neighbor embedding (t-SNE)—facilitates the
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visualization of clusters among commodity markets [20–22]. A comprehensive discussion
of those five clustering methods and t-SNE appears in [3] (pp. 12–14).

3. Anticipated Results

The application of conditional, time-variant ontological clustering to energy-related
commodities should provide deeper insights into a wide range of contestable and contro-
versial propositions about the behavior of these markets. Oil price shocks comprise two
distinct components: effects endogenous to the global business cycle and effects specific
to markets for energy-related commodities [23]. The endogenous component of oil price
volatility reflects cyclical differences in the performance of equity markets in the United
States and other advanced economies [24,25].

Industry-specific effects may be usefully divided according to a dichotomy between
supply-side and demand-side effects [26,27]. Supply-side disruptions are conventionally
ascribed to geographic events, such as storms [28,29], or to or geopolitical events, such
as wars or acts of terrorism [30]. Supply-side disruptions have their most pronounced,
enduring impacts on poorer countries [31,32]. Disruptions in oil supply leave an especially
deep footprint on oil-exporting countries [33–36].

By contrast, many disruptions in demand arise from broader macroeconomic phenom-
ena, such as the financial crisis of 2008–2009 and the ensuing Great Recession. Unsupervised
machine learning has suggested that the COVID-19 pandemic should be evaluated as a
stochastic “black swan” event in commodity markets rather than an artifact of the busi-
ness cycle [3]. Demand-side effects are more pronounced in the wealthy, industrialized
countries that account for most of the world’s consumption of exhaustible and renewable
fuels [37–39].

Refined fuel markets, particularly for gasoline, move asymmetrically vis-à-vis crude
oil markets [40–43]. According to the “rockets and feathers” hypothesis, increases in crude
oil prices are transmitted more quickly to gasoline than decreases [44–46]. Other sources
identify Edgeworth price cycles, which are characterized by sawtooth-shaped time series
consisting of many price decreases punctuated by occasional upward jumps [47,48]. Since
they identify periodicity within otherwise stochastic phenomena, Edgeworth price cycles
may be regarded as a special instance of “rockets and feathers” [49]. Edgeworth cycles may
arise from consumers who are extremely loyal to a brand and therefore unaware of lower
retail gasoline prices, or at least are unwilling to search for bargains [50,51].

Other sources contest the alleged asymmetry of oil and refined fuel markets [52].
Recent crises in energy-related commodity markets have neither exhibited “rocket and
feathers” behavior nor followed Edgeworth cycles. The “rockets and feathers” hypothesis
may partially explain oil–gasoline asymmetry, but not completely. When oil prices are
falling, gasoline prices follow a contrary “boulders and balloons” dynamic by which
gasoline more swiftly tracks oil price declines than increases [53]. Reversals in oil–gasoline
asymmetry strongly suggest that volatility transmission between crude oil and refined
fuels varies over time [54].

Finally, energy commodities move in tandem with agricultural commodities that
supply fuel as well as food, feed, or fiber [55–59]. Fuel feedstock crops, such as corn
and soybeans, either compete directly against crude oil as renewable substitutes or pro-
vide complements to fuels refined from petroleum [60–62]. Although biofuel policies in
wealthy countries are suspected of affecting volatility transmission between energy-related
and agricultural commodities [63], firm evidence supporting such hypotheses has not
emerged [64–68].

4. Discussion

This study advances the understanding of energy-related commodity markets. This
study also expands the toolkit for unsupervised machine learning in time-series forecasting.
This section discusses each of these contributions.
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4.1. Commodity-Specific Insights

Energy-related commodity markets have a disproportionate impact on developmental
economics, international trade, and environmental policy. Factors affecting oil prices
include wars and other political disturbances, shifts in global supply and demand, and
technological and regulatory changes promoting demand for renewable energy. OPEC
production decisions and extreme weather events must also be taken into account.

Interactions between fossil fuels and renewable fuel feedstocks attract especially
intense security. Crude oil, gasoline, and diesel affect not only energy policy but also
demand for agricultural feedstocks for ethanol and biodiesel. Biofuel feedstock demand
may be swayed by domestic and international policies responding to global climate change.

Asymmetry, persistence, and cyclicality in volatility must be understood in the context
of other financial markets and the macroeconomy. Beyond its impact on public policy,
co-movement among all commodity markets and between commodities and other asset
classes influences the leadership of energy companies and other forms of private risk
management, including portfolio allocation. Fuel taxes, renewable energy policy, and the
impact of energy prices on the behavior of industries and households hang in the balance.

4.2. Prelude and Performance: Unsupervised Machine Learning and Time-Series Forecasting

Unsupervised machine learning coexists comfortably alongside conventional methods
for time-series forecasting. Indeed, more complete integration of unsupervised machine
learning with forecasting forms the basis for future work. Each of the energy market
propositions raised in this study—(1) macroeconomic versus industry-specific effects,
(2) supply-side versus demand-side shocks, (3) upside versus downside asymmetry in
oil and refined fuel prices, and (4) interactions with agricultural commodities—can be
described and visualized through clustering and manifold learning.

The unsupervised machine-learning methods in this article exhibit strengths as well
as limitations. Unlike traditional forecasting methods or even generalized linear methods
for panel data, unsupervised machine learning does not rely on the formal apparatus of
null hypothesis significance testing [69]. The statistical community has raised particularly
sharp concerns over the rampant misunderstanding and misuse of p-values [70].

Willingness to use unsupervised machine learning does not hinge on a researcher’s po-
sition on p-values or the growing movement seeking alternatives to statistical conventions
based on them [71,72]. Nor should it. Unsupervised machine learning reveals mathematical
properties and relationships within the data in ways not restricted by the rigid conventions
of null hypothesis significance testing. In the absence of p-values and other conventional
indicators of statistical significance, unsupervised learning converts raw data into mathe-
matical outputs that can, in turn, enable more fruitful applications of economic domain
knowledge and expert judgment. Other applications of machine learning and artificial
intelligence, particularly in natural language processing, readily accommodate a blend of
formal mathematics and subjective but mathematically informed analyst judgment [73–75].

The application of unsupervised machine learning to time series provides both prelude
and performance in this branch of financial economics. Although unsupervised learning
cannot directly forecast time series, unsupervised learning does generate insights beyond
those available through descriptive statistics or exploratory data analysis. As the poet T.S.
Eliot rendered the sentiment, unsupervised machine learning scours “the beaches where
[the sea] tosses / Its hints of earlier and other creation” [1] (p. 36).

Time-variant ontological clustering represents a methodological innovation in its own
right. The time-series data of greatest interest to the research questions in this study con-
sist of the transpose of a more conventional matrix whose rows designate trading days
and whose columns represent distinct commodity markets. Temporal clustering iden-
tifies mathematically distinct periods within the historical record. Transitions between
clusters may indicate structural breaks in a trading regime [76]. Successfully locating
such events addresses a known weakness of conventional forecasting methods. As the
most labor- and data-intensive form of unsupervised machine learning for time series,
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time-variant ontological clustering can report changes in co-movement among market
components—dynamic shifts, as it were, punctuating longer episodes of evanescent equi-
librium among assets within a financial ecosystem [77].

Further applications of this study’s methods include the investigation of changes in co-
movement among asset classes or, more narrowly, among equity or bond market subsectors
during shifts in macroeconomic conditions. This study’s application of unsupervised
machine learning may shed light on jump-diffusion models [78–81], a venerable economic
tradition well represented in the literature on commodity markets [82–85]. If jump-diffusion
processes can generate random sampling algorithms in pattern theory, computer vision,
and medical imaging [86], unsupervised machine learning might facilitate the extraction of
previously undetected mixtures within time series.

This study’s methods also invite the extension of unsupervised machine learning to
forecasting tasks that supervised machine learning methods have begun to tackle. For
instance, all three methods of clustering presented in [2,3] and this study can be applied to
the immensely popular task of forecasting air pollution in Beijing [87–89]. Unsupervised
machine learning holds promise for addressing similar problems in meteorology, pollution
control, and other environmental sciences [90].

The application of unsupervised machine learning to time series in finance, meteo-
rology, and ecology should follow a Hegelian dialectic [91,92]. Unconditional ontological
clustering as thesis stands beside its antithesis, temporal clustering of the matrix transpose.
As the synthesis of space and time, time-variant ontological clustering reveals shifts within
these stylized ecosystems during critical periods. What financial economics calls jumps
or structural shifts, upon closer inspection, may display the mathematical properties that
distinguish recessions from ordinary macroeconomic equilibria [93–95]. Given the common
origins of economics and ecology [96], the similarities between these phenomena and
punctuated equilibria in biology [77] should come as no surprise. The only difference is the
frequency of ticks on the clocks measuring financial and geological time.

5. Conclusions

This study anticipates the completion of a toolkit for applying unsupervised machine
learning to financial time series. An initial application of clustering and manifold learning to
logarithmic returns and forecast volatility garnered quantitative support for the traditional
ontology of commodity markets [2]. Temporal clustering then identified critical periods
within energy-related commodity markets [3]. This study combines these methods into a
novel hybrid called time-variant ontological clustering.

At a higher level of theoretical abstraction, this study unveils the distinct contributions
of machine-learning methodology and data-gathering to time-series analysis. In machine
learning, there is no such thing as a free lunch [97,98]. No single method or family of
algorithms should be expected to outperform others, with respect to any dataset or even a
broad category of problems [99]. The absence of a free lunch counsels the deployment of
all plausible methodologies.

Unsupervised machine learning offers a meaningful combination of predictive success
and explanatory power. The intrinsic parsimony of mathematics [100], remarkably effective
in the natural sciences [101], notoriously fails when applied to economics [102]. By relying
on all available data and the mathematical relationships lurking therein, unsupervised
machine learning captures the most probable source of “unreasonable effectiveness” in
the otherwise dismal science of economics: the data [103]. In that spirit, this study reveals
the mechanics underlying energy-related commodity markets through machine-learning
methods that neither require nor request human judgment.

Author Contributions: Conceptualization, J.M.C.; methodology, J.M.C.; software, J.M.C.; formal
analysis, J.M.C.; investigation, C.A.; data curation, C.A.; writing—original draft preparation, J.M.C.;
writing—review and editing, J.M.C. and C.A. All authors have read and agreed to the published
version of the manuscript.
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