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Abstract: Weather forecasts are indispensable for the decision on the direction of operation of a
runway system. Since the forecasts contain uncertainties, additional challenges arise for runway
configuration management (RCM). With developments in machine learning, numerous models have
been developed to improve forecasts and assist management. In this contribution, an intrinsically
explainable Self-Enforcing Network (SEN) is presented as a decision support system for the RCM at
Frankfurt Airport.
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1. Introduction

Weather forecasts are fundamental to flight safety and management. The functioning
of airport-related meteorological services supports decision-making regarding flight routes
and planning [1].

Despite the greatest efforts in recent years to improve weather forecasts, the uncer-
tainties that still exist must be considered [2,3]. In addition, new challenges arise from
climatic changes, extreme weather conditions, strong wind shear at low altitudes [4,5],
lateral boundary perturbations [6], or general hazardous meteorological conditions [7] that
require variation or extension of previous models [8–10].

The digitalization and increase in, e.g., sensors and satellite imagery, create a large
amount of data that is analyzed with various tools (for an overview, see [8]). For example,
Key Performance Indicators (KPIs) are recommended to be used as a propensity metric in
the preparation of Terminal Aerodrome Forecasts (TAFs) for future weather conditions [1].
Parameters for traffic management initiatives (TMI) under uncertain weather conditions are
proposed using an epsilon greedy approach and a Softmax algorithm [2]. For postprocess-
ing models, natural gradient boosting (NGB), quantile random forests (QRF), distributional
regression forests (DRF), or Support Vector Quantile Regression (SVQR) are used [11,12].

Advances in machine learning and deep learning have led to many methods being
developed in recent years to improve weather forecasts and support air traffic management
(ATM) [13]. These methods are correspondingly diverse, such as an encoder-decoder U-net
neural network to forecast convective storms and lightning [10], offline model-free reinforce-
ment learning, or eXtreme Gradient Boosting (XGBoost), to support runway configuration
management (RCM) [14,15], detection of adverse weather with EEG-enabled Bayesian
neural networks [7], or anomaly detection and hierarchical clustering to spot anomalous
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data and group similar forecasts [1]. Additional methods are used, e.g., Transductive
Long Short Term Memory (T-LSTM) for weather forecasting [16] or Spatio-Temporal Graph
Convolutional Network to estimate the arrival and departure capacity under weather
impact [17].

Hybrid systems combine different methods and learning concepts, such as supervised,
unsupervised, and self-attention [18,19], or decomposition methods with adaptive learning
strategies [20].

In comparison, few articles were found in which self-organizing neural networks are
used for weather prediction, e.g., structural self-organizing maps (S-SOMs) for weather
typing [21], combining SOM with ensemble climate forecasts to investigate the predictability
of European summer climate in relation to the North Atlantic jet stream [22], to predict
ocean currents [23], or to analyze radar data for nowcasting [24].

A big challenge remains regarding the explainability of the results in the context of
ATM [5,25–27]. According to Degas et al. [28], the problem for responsible end users in ATM
is that the results are difficult to understand or are not transparent for safety-critical areas
such as air traffic. Explainability is necessary to (a) describe the algorithms or the results
(descriptive xAI), (b) predict the behavior of an algorithm (predictive xAI), or (c) detect
errors or undesirable behavior of an AI method (prescriptive xAI).

Explainable AI algorithms are distinguished by their scope. The scope describes the
area to which the explanation refers. It can refer to the logic of the entire model (global xAI)
or to the explanation of the background of a particular decision (local xAI) [29].

A further differentiation is made between post-hoc and ante-hoc explanation methods.
In a post-hoc method, an explanation is given after training, in an ante-hoc method, it is
given during training and is already available through the design of the algorithm. This
method is also called intrinsic xAI, which is model-specific and explainable due to its
internal structure. The learning process is transparent (algorithmic transparency), the
technical operation is understandable (simulatability), or the algorithm can be decomposed
into its individual parts (decomposability) [30].

We address the problem by showing how decision support for runway selection based
on weather forecasts is accomplished with a Self-Enforcing Network (SEN), a self-organized
learning neural network [31]. To explain the recommendations, Shapley Values are used to
indicate which wind speeds and directions are determinants for the recommendation. Due
to the way the overall system works, we are referring to an intrinsically explainable SEN.

The contribution is organized as follows: the next section provides a brief introduction
to the methods used. Subsequently, the model as well as the results are presented. Finally,
the challenges posed by the new, more complex, and detailed data structure are pointed
out, and solution concepts are proposed.

2. Methods

The ensemble forecast system COSMO-DE-EPS, the Self-Enforcing Network (SEN),
and Feature Importance using Shapley Values (SV) are briefly described below.

2.1. ICON-D2-EPS

Air traffic management at Frankfurt Airport requires not only weather data for a
specific point in time but also forecast data for the next period. The forecast data comes
from the ICON-D2 ensemble prediction forecast system (ICON-D2-EPS), which is operated
by the German Weather Service (DWD). The use of an ensemble forecast system makes it
possible to quantify uncertainties or probabilities for the predicted wind situations.

The main purpose of running an ensemble system is to enable an estimation of the
forecast uncertainty, in our case, the development of the wind situation, by running a
number of physically consistent scenarios of future development. The different scenarios
arise from uncertainties in the initial conditions and model errors. An additional source of
forecast uncertainty arises from the border conditions of a limited area model [32].
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ICON-D2-EPS is a limited area model and currently consists of 20 ensemble members.
It runs eight times a day with 48 h of forecasts for the 00, 03, 06, 09, 12, 15, 18, and
21 UTC runs.

In the case of ICON-D2-EPS, the 20 ensemble members were created through pertur-
bations of the initial state and perturbations of a number of parametrizations of the model
physics (e.g., turbulence, microphysics, or shallow convection). In addition, the boundary
conditions were received from the global ICON-EPS forecast model, which consists of
40 ensemble members. From the total 40 ensemble members, the first 20 (arbitrarily cho-
sen) were used to provide the boundary conditions for the 20 ensemble members of the
limited area model ICON-D2-EPS [32].

On the one hand, this is an advantage over the use of traditional deterministic fore-
cast models, but on the other hand, it poses an additional challenge for management as
uncertainty must be included in the decision-making process [33].

2.2. Self-Enforcing Network (SEN)

The Self-Enforcing Network (SEN) is a deterministic, two-layered, and self-organized
learning neural network that acquires and orders knowledge according to cognitive theory
learning models [34,35].

The characteristic features of the SEN algorithm and SEN tool are: (a) a semantic
matrix; (b) the so-called cue validity factor (cvf) for highlighting essential attributes; (c) the
transformation of the data from the semantic matrix into the weight matrix by the specific
learning rule; and (d) various visualizations.

(a) The semantic matrix is the basis of the learning process. It contains the essential at-
tributes (features) and their degree of membership in an object [35]. The data is normalized
in the interval (−1, 1).

(b) For each feature, a cue validity factor (cvf) is set when building the model. The cue
validity factor influences the strength of an attribute’s effect on activation by the network.
In the model, the cvf influences how much of the wind from the eleven measurement points
is used for the decision. The measurement points that are farthest away have the lowest
cvf; beyond that, the middle quantile (median) has the highest cvf (see below, Section 3).

(c) The Self-Enforcing Rule (SER) is the learning rule used in SEN, which transforms
the values of the semantic matrix vsm into a weight value between attribute and object wao
with the learning rate c, a parameter responsible for adjusting weights in a neural network,
and the cue validity factor (cvfa):

wao = c× vsm × cv f a. (1)

The peculiarity of SEN is that the weight matrix is not randomly generated.
There are several activation functions available that return the activation value aj of a

neuron; for this problem, the enforcing activation function (EAF) is the most suitable [33].
In the general representation of the functions in neural networks, wij (the weight w between
the sending neuron i and the receiving neuron j) is the equivalent of wao:

aj =
n

∑
i=1

wij × ai

1 + |wij × ai|
. (2)

(d) The following visualizations are used to display the results: The so-called map vi-
sualization places the reference types on a two-dimensional map. The greater the Euclidean
distance between the objects, the further apart they are shown on the map; correspondingly,
similar objects are close together.

In the SEN-visualization, the activation values indicate the degree of similarity be-
tween the new input data (weather forecasts) and the reference types, i.e., the runway
directions. The higher the final activation values are, the more the input data resembles the
reference types. The computed Euclidean distances are also displayed, where similarity
is indicated by the smallest distance between the input data and the reference types (see
below, Section 3).
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2.3. Shapley Values

The calculation of the Feature Importance is based on the concept of Shapley Values
(SV) from the cooperative game theory of Shapley [36], according to which the influence of a
player can be computed considering the effects of cooperation and individual performance
on the game outcome.

The value a player contributes to the payoff is called the SV, with four defining
properties: “zero player property”, “efficiency”, “symmetry”, and “linearity” [37].

The zero player property means that an actor receives no share of the payoff if that
actor contributes nothing to the final outcome. The efficiency property refers to the actual
influence of an actor on the outcome and allows inferences to be made about that actor.
Symmetry states that two actors who have the same influence on the outcome have the
same SV. Apart from that, the actor who contributes the most has the highest SV. Linearity
ensures that the sum of all SVs accounts for the total influence on the outcome.

Only if these four properties are true can a value be called a Shapley Value. The SV Φ
of a player i on the game outcome v can be calculated with the following formula [38]:

Φi(v) = ∑
S⊆Nr{i}

|S|!(n− 1− |S|)!
n!

(v(S ∪ {i})− v(S)). (3)

From the set of players participating in the game, all possible player sets S are formed,
each containing a subset n of the entire number of players N. The influence Φ of player
i on the outcome of the game v is calculated for each player set, considering the effects
of cooperation between the players. The total contribution of the player to the game
outcome Φi(v) is the sum of all partial influences resulting from coalitions in the respective
player sets.

It turns out that the features in SEN have the properties of dummy players [39].
Dummy players are SV whose constant contribution to the game result is independent of
the other players.

This property results from the fact that the weight matrix is not initialized with random
values but with the values from the semantic matrix. This leads to the effect that the weight
values directly reflect the importance of the individual attributes in the reference types, and
thus the SV has corresponding effects on the output. Therefore, the formula for calculating
the SV is shortened to [39]:

Φi(v) = v(i). (4)

The four properties of Shapley Values described above are met since, on the one hand,
the feature’s individual impact on the total activation is extracted, and on the other hand,
the added values constitute the total activation value.

Because of the structure and operation of SEN and the immediate identification of its
Feature Importance, we can consider SEN to be an intrinsically Explainable AI.

3. Model and Results

The operating direction of the runway system has to be selected according to the
wind conditions between the ground and up to approximately 5000 m. The two possible
operating directions at Frankfurt airport are “Direction 07”, used during generally easterly
winds, and “Direction 25”, used during westerly winds.

The weather data necessary for the appropriate decisions are derived from the COSMO-
DE-EPS ensemble prediction System of the German Weather Service (Deutscher Wetterdi-
enst (DWD)).

The required weather data are ensemble forecasts for 11 reference positions located
at different distances along the glide path to the airport and on the airport itself. For each
position, five quantiles (i.e., a statistical measure reflecting the dispersion of the ensemble
forecasts) are computed for the parallel wind component (i.e., the headwind or tailwind
component of a departing or approaching aircraft). The ensemble forecast data of the DWD,
processed over years, are the basis for our experiments.
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For the development of the reference types, representing the operation directions 07
and 25 at the airport in Frankfurt, the decisions of air traffic controllers based on the weather
forecasts were considered. The knowledge of several experts (including meteorologists,
air traffic controllers, and SEN developers) was incorporated into the development of the
model shown in Figure 1.
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Figure 1. Model of the decision reference types (Figure on the left ([32], p. 9); Figure on the right
METAR: https://metar-taf.com/de/EDDF accessed on 27 June 2023).

The reference types for directions 07 and 25 are defined in the semantic matrix,
which contains 55 attributes (5 wind components reflecting the 5 quantiles for each of
the 11 measurement points of the forecasted wind direction at the reference positions along
the glide path—GP). The normalized data are transformed into the weight matrix using the
learning rule and are learned by SEN as “representative or ideal wind conditions” with a
learning rate c of 0.5 and three iterations using the Enforcing Activation Function (EAF).
In Figure 2, there is a section of the reference types in which the west direction always
contains negative values [35].
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After the learning process and given new input data (weather forecasts), different
visualizations are available, as shown in Figure 3 with a recent weather forecast.

The input vectors include the forecasted data at 0000 UTC for the next fifteen hours.
The two visualizations next to the input vectors show the similarity of the forecasts to
the reference types for the corresponding operation direction. In the SEN visualization,
only one selected prediction is focused, and the appropriate reference type is attracted
according to the similarity of the wind conditions. In the map visualization, all predictions
are classified into the reference types Direction 07 (at the bottom) and Direction 25 (at the
top). The calculated activation values are visualized in tabular form (colored green for high
positive activation, white for low activation and red for high negative activation) as well as
by bars sorted according to highest activation (Ranking) and smallest Euclidean distance
(Distance). In this case, the unambiguous recommendation is runway 07.

https://metar-taf.com/de/EDDF
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Figure 3. Results and visualizations of the SEN recommendation at 0000 UTC.

The intrinsic explainability of SEN allows the straightforward determination and
visualization of the feature’s importance for the final activation of a forecast. For a better
interpretation of the results, it was decided to calculate the feature importance for the
11 measurement points along the glide path and to adjust the visualization by rotating
the visualization by 90 degrees and sorting the values according to the location on the
glide path. Figure 4 shows the feature importance of the two reference types, Directions 07
(colored green) and Direction 25 (colored blue).
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Figure 4. Illustration of the Feature Importance of Directions 07 and 25.

The forecast at 0000 UTC for 0400 UTC is classified by SEN as Direction 07 with a
final activation of 0.63 (Figure 3). An analysis of the feature importance of this prediction
in Figure 5 shows the influence of the conditions at the measurement points on the final
activation compared to the classified direction. For 0400 UTC, the high-altitude winds
(GP_5, GP_4) have a stronger influence on the final result than for Direction 07, while the
medium-altitude winds at GP_3, GP_2, and GP_1 have a weaker influence. The winds
directly on the runway (GP_00) have a negative Feature Importance. Here, wind conditions
oppose the use of Direction 07 and thus support the use of Direction 25 by reducing the
activation of Direction 07.
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The prediction at 0000 UTC (Figure 3) can be further analyzed by examining the
change in feature importance at the fifteen predicted times (Figure 6).
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Figure 6. Feature Importance between 0400 UTC and 1400 UTC at 0000 UTC.

The influence of the high-altitude winds decreases in the course of time until 0700 UTC,
and the ground-level wind has less and less influence on the final activation, too. At
0800 UTC, the winds are classified by SEN as being in direction 25, and thus a change
of the operating direction is recommended. Here the correspondence between ranking
and distances is not correct, an indication of the upcoming change (Figure 7). Currently,
the winds close to the ground are crucial for the decision. Until 1400 UTC, the feature
importance increases at all measurement points, and finally, even the high-altitude winds
have a stronger activation than the classified direction 25.
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Figure 7. Prediction of SEN at 00 UTC between 07 UTC and 09 UTC for Case.

The forecast at 0000 UTC predicts a change of direction from Direction 07 to Direction
25 at 0800 UTC. Examining the forecasts between 1800 UTC of the previous day and
0900 UTC of the following day, the change was already predicted at that time. Figure 8
shows the map visualization of SEN for the different forecasts, which was created in Python.
This visualization was not generated by attraction and repulsion as in the SEN tool but by
calculating the concrete coordinates; nevertheless, it gives the same representation. The line
between the forecasts allows the user to see the progression of the forecast. The corridor
immediately indicates the time at which a change in wind direction occurs.
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Upon analyzing the Feature Importance at the time of the change, it can be seen how
the recommendation for a change at 0800 UTC strengthened over time as the time of the
change got closer (Figure 9).
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In this case, at 0249 UTC, it was decided to start air traffic with Direction 25 at the
start of flight operations at 0400 UTC. This was justifiable because, until 0800 UTC, the
winds were very weak, and in this case, flight operations with a tailwind were possible.
This saved the costly change during the day.

4. Conclusions and Recent Work

For complex systems such as weather forecasting and runway configuration man-
agement, we have shown how Feature Importance can be used to help understand the
results of the recommendation. The architecture and learning procedures of SEN fulfill the
properties of Shapley Values with no loss of performance in determining Feature Impor-
tance. Feature Importance can be read directly by decomposing a vector into its individual
components; thus, SEN can be classified as intrinsically Explainable AI.

While the first version used for predicting the best runway to approach used 11 selected
measurement points in the planes’ glide path, a currently enhanced model utilizes wind
data from around the airport in an area of 2.500 km2. When taking into account the area,
the grid’s density, and the number of ensembles, this increases the amount of input data
to be processed for a single prediction by a factor of more than 168.000. With thousands
of available training data entries, the amount of data to be processed is staggering. The
fact that weight matrices grow exponentially with increasing object numbers complicates
matters even further.

The amount of data to deal with has two consequences: firstly, raw data can no longer
be inspected reasonably because the human mind is unable to cope with the given amount.
Secondly, the required computational power to run experiments is not available on current
consumer desktop systems. This applies especially to the number of CPU cores available.

The above considerations lead to the following consequences:
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1. It is necessary to build tools to view raw data in an aggregated and easily perceiv-
able manner.

2. It is necessary to move the experimentation software away from a desktop application
and towards a command-line tool that can be executed on a HPC. Techniques and
optimizations have to be introduced to deal with the new dimension of data.

3. The modeling process can no longer be accomplished by a human alone but instead
needs to be computer-aided in terms of data selection for the training process and
validation of the resulting model.

4. When discussing the results with domain experts, i.e., air traffic controllers, the
decisions taken by the system must be retraceable and must be presented to them in a
manner that makes it clear how the predicted result came about.

We are confident that the usage of Explainable AI, as presented in this contribution,
will support the professional exchange with flight controllers by enabling us to quickly
comprehend why the system came to a specific prediction and which edge cases can be
ignored or must be considered.
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