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Abstract: In this paper, we are interested in modeling the dynamics of cutaneous leishmaniasis
(CL) in Errachidia province (Morocco), using epidemiologic data and the most notable climatic
factors associated with leishmaniasis, namely humidity, wind speed, rainfall, and temperature. To
achieve our objective, we compare the performance of three statistical models, namely the Vector
Auto-Regressive (VAR) model, the Vector Error Correction model (VECM), and the Generalized
Linear model (GLM), using different metrics. The modeling framework will be compared with the
Markov Switching (MSM) approach.

Keywords: leishmaniasis dynamics; generalized linear model (GLM); Markov switching model
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1. Introduction

Despite new developments in disease control and advanced treatment methods, leish-
maniasis is still one of the most prevalent tropical diseases in the world. The World Health
Organization (WHO) defines leishmaniasis as an infectious disease caused by protozoan
parasites in the genus Leishmania. The transmission of the disease occurs through the bite
of a sandfly infected with Leishmania parasites. Infection may be restricted to the skin in
cutaneous leishmaniasis (CL), to the mucous membranes in mucosal leishmaniasis (MCL),
or spread internally in visceral leishmaniasis (VL). This disease is in fact a vector-borne
disease whose transmission is highly influenced by climatic factors, whereas the nature
and magnitude differ between geographical regions. Further, it is known that spatial het-
erogeneity influences shifting patterns of vector parasite interactions, vector–host contact,
and susceptibility of the population [1].

Many recent studies and research papers [2–4] suggest that the incidence of leishma-
niasis is influenced by climatic variables. Therefore, prediction approaches are needed
to achieve a better outcome in disease forecasting. In this context, the predictions made
through time series analysis are extremely important in light of recent developments. This
will undoubtedly help identify trends and possible disease outbreaks, which may ultimately
facilitate the smooth and timely implementation of control programs through appropriate
precautionary interventions.

In this paper, we compare the performance of three statistical models, namely the
Vector Auto-Regressive (VAR) model, the Vector Error Correction Model (VECM), and
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the Generalized Linear Model (GLM), using different metrics. These models are used to
measure the impact of climate change on the epidemiology of leishmaniases in Errachidia
province, Morocco.

These models were selected based on a benchmarking study that showed their useful-
ness in explaining the dynamics in different fields. Furthermore, the time series modeling
framework will be compared with the Markov Switching approach.

2. Materials and Methods

The main contribution of this study is to model cutaneous leishmaniasis (CL) dy-
namics in Errachidia province (Morocco) using epidemiologic data and the most notable
climatic factors associated with leishmaniosis, namely humidity, wind speed, rainfall, and
temperature. To achieve our objective, we use three statistical models, namely the Vector
Auto-Regressive (VAR) model, the Vector Error Correction model (VECM), and the Gener-
alized Linear Model (GLM). The modeling framework will be compared with the Markov
Switching approach.

2.1. A Brief Overview of Generalized Linear Models (GLM)

Generalized Linear Models include several types of models, such as linear regression,
logistic regression, Poisson regression, and Negative Binomial Regression [5]. In these
models, the response variable Yi is assumed to follow an exponential family distribution.
The mean µi of the response variable is often assumed to be a nonlinear function of xT

i β.
The model is given by:

g(E(Y)) = β0 + β1X1 + β2X2 + · · ·+ βnXn + ε, (1)

where g(E(Y)) specifies the link between the mean E(Y) and the linear combination of
predictors X1, X2, . . . , Xn. GLMs are generally fitted using a Newton-type method, such
that an iteratively re-weighted least square (IWLS) algorithm is also referred to as a Fisher
Scoring algorithm [6].

Various predictor selection methods are used to compromise the stability of a final
model from several nested models. Based on the significance of the predictors and their
correlation values with the outcome Yi we can reduce the number of predictors. Using
forward-selection or backward-elimination variable-selection algorithms, the deviance,
and the AIC criterion, we can determine the best-fitting model [7]. In order to assess the
relevance of GLMs, we use the residual deviance test, defined as:

D = 2{l(saturated)− l(M)}, (2)

where l(M) is the log-likelihood of the model M, and l(saturated) is the log-likelihood of
a saturated model. A saturated model is where the number of parameters is equal to the
number of data points. Thus, models with high likelihoods will have low deviances, and
vice versa. If the model M is correct and has p + 1 parameters, including the intercept, then
the deviance will generally approach a chi-square distribution with degrees of freedom
equal to n− (p + 1).

Poisson and negative binomial regression models (Figure 1) are part of the family of
Generalized Linear Models that are commonly used in epidemiological studies [8]. These
models are widely used to model disease incidence data with a non-negative integer, no
upper limit, and highly skewed distribution. Otherwise, a zero-inflated Poisson (ZIP)
model, a zero-inflated negative binomial (ZINB), or a negative binomial need to be used [9].
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Figure 1. Checking for zero-inflation and overdispersion in the analysis of count data.

2.2. A Brief Overview of Multivariate Time Series Models

The Multivariate Time Series approach (Figure 2) is used to model and explain the
interactions among a group of time series. In this framework, the strength of associations
among different variables is expressed across time lags.

Figure 2. VAR and VECM Analysis model.

The Vector Auto-Regressive (VAR) model is one of the most commonly used tech-
niques. It is considered as an extension of the auto-regressive model. The VAR model
involves multiple independent variables and therefore has more than one equation, ex-
plaining the behavior of the relationship between endogenous variables as well as between
endogenous and exogenous variables. Each equation uses as its explanatory variables the
lags of all the variables and likely a deterministic trend.

If all of the original variables have unit roots and are not cointegrated, then they
should be differenced and the resulting stationary variables should be used in the VAR. Let
x(t) = (x1(t), . . . , xm(t))

′ be an m-dimensional stationary process admitting the following
VAR(p) representation:

x(t) = A1xt−1 + · · ·+ Apxt−p + εt, t ∈ Z (3)

where A1, · · · , Ap are (m×m) coefficient matrices, p is the model order, and εt = (ε1t, · · · , εmt)′

is a (m× 1) vector of white noises with E[εtε
′
s] = 0 for t 6= s and εt ∼ N(0, ∑ε). The coeffi-
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cient matrices A1, · · · , Ap describe the temporal relationships within the m time series in
the system.

If the cointegration exists then a vector error correction model (VECM), which com-
bines levels and differences, can be estimated instead of a VAR in levels. The VECM
regression equation is given by:

∆yt = α1 + ρ1e1 + ∑n
i=0 βi∆yt−i + ∑n

i=0 δi∆xt−i + ∑n
i=0 γi∆zt−i (4)

∆xt = α2 + ρ2e2 + ∑n
i=0 βi∆yt−i + ∑n

i=0 δi∆xt−i + ∑n
i=0 γi∆zt−i (5)

2.3. A Brief Overview of the Markov Switching Model (MSM)

Although ARMA models are quite successful in numerous applications, they are
unable to represent many nonlinear dynamic patterns such as asymmetry, amplitude
dependence, and volatility clustering [10]. In addition, nonlinear time series models are
not a panacea and have their own limitations. First, the nonlinear optimization algorithms
easily get stuck at a local optimum in the parameter space. Second, most nonlinear models
are designed to describe certain nonlinear patterns of data and hence may not be so flexible.

The Markov Switching model of Hamilton [11], also known as the regime-switching
model, is one of the most popular nonlinear time series. This model involves multiple
equations that can characterize the time series behavior in different regimes. By permitting
switching between these structures, this model is able to capture more complex dynamic
patterns. This model and its variants have been widely applied [12,13]. The following
network mapping [14] summarized the co-occurrence of author’s keywords when using
the Markov Switching model (Figure 3).

Figure 3. A network analysis of keyword co-occurrence.

In this network mapping, the sizes reflect the frequency of the author’s keywords in
the Markov Switching literature, while the colors represent the number of clusters.

Let st denote an unobservable state variable assuming the value of one or zero. As
mentioned by Kuan (2002), a simple switching model for the variable zt involves two
AR specifications:

zt =

{
α0 + βzt−1 + εt, st = 0
α0 + α1 + βzt−1 + εt, st = 1

(6)

where |β| < 1 and εt are i.i.d random variables with mean zero and variance σ2
ε . This is

a stationary AR(1) process with mean α0/(1− β) when st = 0, and it switches to another
stationary AR(1) process with mean (α0 + α1)/(1− β) when st changes from 0 to 1. This
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model admits two dynamic structures at different levels, depending on the value of the
state variable st. In this case, zt are governed by two distributions with distinct means, and
st determines the switching between these two distributions (regimes).

To implement our methodology and test all aforementioned modeling approaches, in
this research we used monthly CL incidence data from Errachidia province and climatic
variables. Data covers the period from January 2010 to December 2019.

Errachidia province is located in the Ziz Ghris Valley in the south-east of Morocco
(Figure 4), including the Saharan areas, plains, and highlands at an altitude above 1900 m
and covering a surface of 46,000 km2. Errachidia has an arid climate with temperatures
between−4 ◦C and 48 ◦C, with large daily and seasonal temperature variations. The annual
mean temperature is 21 ◦C. Rainfall is scarce and usually occurs between February and
March. The annual total precipitation is 134.64 mm [15].

Figure 4. Location of Errachidia province (HCP).

3. Results and Discussions

The analysis of collected data shows that Errachidia province recorded 8487 cases of
cutaneous leishmaniasis between 2010 and 2019 (Figure 5). It can be observed from Figure 5
that the monthly CL incidence peaked between 2010 and 2011, declined between 2011 and
2016, and rose around the end of 2016 to 2018. In addition, the number of CL cases had
seasonal fluctuations. Most cases were recorded in the months of November, December,
and January. The trend starts to increase in October, with high peaks in December and
January, and declines until February. A steady-state period is observed until September.

Figure 5. The evolution of LC incidence in Errachidia province from 2010 to 2019.

To study the impact of climate change on the CL incidence in this region, we selected
seven predictors, namely the monthly average humidity (Hmoy), precipitation (Prec),
average wind speed (Vmoy), minimum temperature (Tmin), mean temperature (Tmoy),
and maximum temperature (Tmax), as well as evaporation (Evap).

A linear correlation between the covariables was assessed using the Pearson coefficient,
and predictors that present a strong correlation with CL cases were retained. The Spearman
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coefficient and the cross-correlation between the CL cases and climatic data were estimated
to determine the predictors and the adequate lags to be included in the model.

Our first fitted model is Poisson regression. However, the dispersion coefficient
showed severe over-dispersion (ΦPoisson = 145.18). Thus, negative binomial regression was
used as an alternative approach to model over-dispersion in the data.

The use of the stepwise method for 3- and 6-month gaps between CL cases and
predictors leads to the retention of the model given by (Table 1):

CL ∼ Vmoy6 + Tmin6 (7)

Table 1. Results of the stepwise selection algorithm for the 3- and 6-month gaps between CL and
predictors.

GLM: Negative Binomial Models AIC

Log(E(CL))~9.0747 Hmoy − 28.3713 Prec + 1.0572 1030.9
Log(E(CL))~6.90924 Hmoy3 + 0.18451 Tmoy3 − 2.26628 980.74
Log(E(CL))~1.20795886 Vmoy6 + 0.07317 Tmin6 − 2.34280875 932.59

Note: The bold means that this is the optimal value.

To examine the adequacy of the fitted model, a residual diagnosis as well as the
deviance test were performed.

The multivariate time-series analysis shows that data can be considered as stationary
time series. The optimal VAR model identified is given by:{

CLt = 0.629 CLt−1 + 3.326 Tmoyt−1 − 45.573
Tmoyt = −0.010 CLt−1 + 0.894 Tmoyt−1 + 2.844

(8)

To assess the performance of this model a post analysis is required. The test of the
presence of serial correlation in the residual, the Portmanteau Test, shows a p-value equal
to 0.0874 > 0.05, meaning that we can accept the null hypothesis of nonexistence of serial
correlations.

Concerning the test of heteroskedasticity, the p-value of the arch test is equal to
0.009107 < 0.05, meaning that we reject the null hypothesis and thus the absence of het-
eroskedasticity.

The Jarque-Bera test was then used to check if the residuals fit the normal distribution.
Because the p-value is higher than 0.05, the normal distribution is accepted. The following
figure (Figure 6) shows no structural break.

Figure 6. Stability Test of the VAR model adjusted.
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One of the most useful tools to characterize the dependence among time series when
running the VAR model is the causality test. In our case, the objective of this test is to check
if the variable “Tmoy” contributes to forecasting the “CL incidence” variable.

The p-value of the Granger causality test is equal to 0.0023 < 5%, meaning that we can
reject the null hypothesis. Hence, “Tmoy” is considered a pertinent feature (risk factor)
when predicting the “CL” variable. As displayed in Figure 7, a good performance is shown,
in terms of predictions obtained from VAR(1).

Figure 7. Forecasts for CL cases and the mean temperature from VAR(1).

The following figure (Figure 8) provides results about the Markov Switching model
fitting with the estimation of regime 1 and regime 2. However, based on the AIC and
residuals diagnosis, the VAR(1) performs better than the Markov Switching model.

Figure 8. Results about Markov Switching model fitting.
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4. Conclusions

In this study, we are interested in modeling the spread of cutaneous leishmaniasis (CL)
using the Vector Auto-Regressive (VAR) model, the Vector Error Correction model, (VECM)
and the Markov Switching approach (MSM). Based on our findings, we can mention that
the CL time series are characterized by extreme values; therefore, it was cumbersome to
explain them using meteorological data. It is worth noting that among all candidate models,
the VAR model performs well in terms of underlying hypotheses such as the stationary
series, so there is no need to use the VECM. In addition, the VAR model provides good
results in terms of prediction. In our case, the implication of the adequacy of the VAR is
that the CL variable can be considered as a function of its own past values.

It is worth noting that the VAR model is one of the most successful, flexible, and easy to
use models for the analysis of multivariate time series. This model often provides superior
forecasts to those from univariate time series models. In addition to data description and
the underlying theory based on simultaneous equations and forecasting, the VAR is also
used for structural inference.
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