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Abstract: We propose a novel model to achieve superior out-of-sample Sharpe ratios. While most
research in asset allocation focuses on estimating the return vector and covariance matrix, the first
component of our novel model instead forecasts the future tangency portfolio, and the second
component then determines the optimal investment portfolio. First, to forecast the tangency portfolio,
we forecast the efficient frontier by decomposing its functional form, a square root second-order
polynomial, into three interpretable coefficients, which can then be used to calculate a forecasted
tangency portfolio. These coefficients can be forecasted using vector autoregressions. Second, the
model invests in the portfolio on the efficient frontier that is the minimum Euclidean distance from
this forecasted tangency portfolio. A motivation for our approach is to address the limitation that
the tangency portfolio only maximizes the Sharpe ratio when future returns and covariances are
stationary, and can be directly estimated with historical data, which often does not hold in out-of-
sample data. Our approach addresses this shortcoming in a novel way by forecasting the tangency
portfolio, rather than estimating return and covariance. For empirical testing, we employ two sets of
assets that span the market to demonstrate and validate the performance of this novel method.

Keywords: modern portfolio theory; mean–variance optimization; tangency portfolio; forecasting;
efficient frontier; asset allocation

1. Introduction

Mean–variance optimization, developed by Markowitz [1], is the foundation to Mod-
ern Portfolio Theory (MPT). The model uses quadratic programming to select portfolios
that minimize risk, as measured by volatility, while generating a fixed expected return.
The model constructs a pareto frontier that consists of these optimal portfolios, known as
an efficient frontier. This efficient frontier allows investors to visualize tradeoffs between
portfolio risk and return. A natural question that arises is which portfolio on the efficient
frontier is best to invest in. In 1964, William Sharpe developed a portfolio metric known as
the Sharpe ratio, defined as the ratio of the portfolio return exceeding the risk-free rate and
the portfolio’s volatility [2]. The portfolio that maximizes the Sharpe ratio when there is a
risk-free rate is the one that corresponds with the market. This portfolio intersects with the
capital market line (CML) under the Capital Asset Pricing Model (CAPM), which has an
intercept at the risk-free rate and a slope defining the Sharpe ratio. This Sharpe-maximizing
portfolio is known as the tangency portfolio because the CML is tangent to the efficient
frontier as the feasible region is convex.

The tangency portfolio model makes several assumptions that researchers have at-
tempted to relax, such as transaction costs [3]. This paper, however, will only focus on
relaxing one: that the future expected asset returns and covariances will be identical to the
asset’s historical data. This paper will focus on relaxing this assumption, as there often exist
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significant estimation errors in practice because of nonstationary market behavior. This
limitation is significant, as Dickinson [4] found that the misestimation of these parameters
causes the portfolio weights to be unstable, and Kan and Zhou [5] found that estimating the
population parameters with samples leads to poor performance out-of-sample. There exist
multiple models that attempt to relax this assumption already. Some of the most significant
are the Black–Litterman model, Covariance Matrix Shrinkage, and Dynamic Conditional
Correlation Multivariate GARCH (DCC MV-GARCH).

In 1992, Black and Litterman [6] proposed a closed-form model to provide better
posterior estimates of the return vector and covariance matrix using a Bayesian approach.
The Black–Litterman model uses two priors: investors’ beliefs in the assets and the market
capitalized equilibrium view, which weights assets by their market capitalization. The
model requires investors to provide several inputs: a matrix of their views on the assets,
a vector of the returns in each view, the level-of-unconfidence in each view, and the
hyperparameter weight-on-views, which determines how much weight should be put on
each prior.

Engle and Sheppard [7] proposed a method to forecast covariance matrices using Gen-
eralized Autoregressive Conditional Heteroskedasticity (GARCH), which is a time-series
method to estimate volatility (Engle and Sheppard, 2001). DCC MV-GARCH transforms
residuals from GARCH models applied to each asset to obtain conditional correlation
estimators, which can be used to estimate the covariance matrix.

Ledoit and Wolf [8] proposed a model to obtain better estimates of the covariance
matrix through shrinkage (Ledoit and Wolf, 2003). Shrinkage reduces estimation error by
reducing the sample covariance matrix towards a highly structured estimator, which helps
ensure that estimates of the covariance matrix are stable when the number of columns is
greater than the number of rows.

While these models improve estimation of the MPT parameters, and therefore provide
more accurate tangency portfolios, they still have limitations. Mankert [9] explains that, in
practice, the Black–Litterman model can be difficult to implement because it requires that
the investor input a large number of estimates including matrices and vectors. Covariance
matrix shrinkage and DCC MV-GARCH may provide better estimates of covariance matri-
ces, but are unable to provide estimates of the return vector, which is the other parameter
required for mean–variance estimation. Finally, the complexity of the Black–Litterman
model and DCC MV-GARCH relative to the Markowitz model makes them difficult for
investors to interpret and trust.

We provide a novel approach to relax this assumption. While multiple researchers
have attempted to relax this assumption to provide more accurate tangency portfolios by
providing better parameter estimates, we propose an alternative approach: forecasting the
tangency portfolio through the dimensionality reduction of the efficient frontier’s square
root second-order polynomial coefficients and selecting the portfolio that is the minimum
Euclidean distance from this forecasted tangency portfolio.

This novel approach is related to two previous works. The standard approach to
creating the efficient frontier is to use mean–variance optimization to find several efficient
portfolios and extrapolate between these, but Merton derived a closed-form solution
of the efficient frontier as a square root second-order polynomial function with three
coefficients [10]. Alexander et al. [11] previously developed a model to forecast these
coefficients to provide better parameter estimates. However, this previous method was
more prone to overfit than our proposed method, since the coefficients were calculated
using yearly data rather than rolling windows, and used a less-robust weights extraction
method that did not use the forecasted tangency portfolio. In addition, the previous paper
forecasted the same coefficients that Merton derived, rather than a set of interpretable
coefficients. The set of assets used in the previous empirical analysis was also not as diverse
as the two sets used in this paper.

This paper provides three main contributions: (1) This paper develops three novel,
interpretable coefficients: rMVP, σMVP, and u. (2) This paper provides a method to forecast
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the coefficients with time-series regression. (3) With these forecasted coefficients, we
propose a method of selecting the portfolio that is the minimum Euclidean distance from
the forecasted tangency portfolio, because it is the most robust to market movement.
We provide empirical results demonstrating that this novel approach outperforms four
benchmark portfolios across metrics like Sharpe ratio and max drawdown relative to annual
return. We also provide a visual showing that this novel approach consistently outperforms
the benchmarks over time.

1.1. Assets Data

To test our proposed models, we used two asset universes: one set corresponding to
market capitalization and growth/value, and the other set corresponding to the market
sectors. The first set included six mutual funds representing the French–Fama three-factor
model’s [12] classification of portfolios: growth/value stocks and large/small market
capitalization (we refer to this set as GVMC).

The mutual funds in the first set were:

• Fidelity OTC Portfolio—large-cap growth (FDGRX)
• Fidelity Growth and Income Portfolio—large-cap value (FGRIX)
• Fidelity Growth Company Fund—mid-cap growth (FLPSX)
• Fidelity Low-Priced Stock Fund—mid-cap value (FOCPX)
• Invesco Oppenheimer Discovery Fund—small-cap growth (HRTVX)
• Heartland Value Fund Investor class—small cap value (OPOCX)

The second set included all nine original S&P Sector ETFs:

• Materials (XLB)
• Energy (XLE)
• Finance (XLF)
• Industrial (XLI)
• Technology (XLK)
• Consumer Staples (XLP)
• Utilities (XLU)
• Health Care (XLV)
• Consumer Discretionary (XLY)

Both also included a mutual fund to represent an investment in bonds: FPA New
Income Fund (FPNIX). These asset datasets were collected using the Yahoo Finance API. In
addition, we used the French–Fama three-factor data from Dr. French’s website [13] for the
risk-free rate of our tangency portfolios.

1.2. Formulation of Markowitz Efficient Frontiers

The MPT model performs mean–variance optimization to select portfolios and creates
an efficient frontier as a visual. The following is the formal notation used in MPT: ri is the
expected ln return of an asset in r. wi is the weight of an asset in w, satisfying ∑n

i=1 wi = 1.
rtarget is the target expected return of the portfolio. V is the covariance matrix. e is the ones
vector. The formulation of the mean–variance optimization is:

min
w

wTVw

s.t. wTr = rtarget and eTw = 1

By adding a constraint that wi ≥ 0, we can forbid shorting; this paper uses models
that allow shorting to better simulate a breadth of investment strategies.

We used both the CVXPY optimizer and the Sequential Least-Squares Quadratic
Programming algorithm (SLSQP) in the SciPy package of Python to perform mean–variance
optimization for the 33 years of assets data.
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1.3. The Tangency Portfolio

In MPT, there is often a question of which portfolio to select on the efficient frontier, i.e.,
what target return to select. Tobin’s Separation Theorem [14] states that rational investors
would choose a combination of the risk-free asset and an optimal portfolio known as
the tangency portfolio. The tangency portfolio is the portfolio that intersects the Capital
Market Line (CML) under the Capital Asset Pricing Model (CAPM). The tangency portfolio
maximizes a standard portfolio metric, the Sharpe ratio [15], which is defined by

rp−r f
σp

.
The standard approach to finding the tangency portfolio [16] poses it as an optimization
problem. Further below, we provide a method to find the tangency portfolio from efficient
frontier coefficients.

1.4. Efficient Frontiers Coefficients

Merton [10] used Lagrange multipliers to derive a functional representation of the
efficient frontier as a square root second-order polynomial with three coefficients [17]:

A = eTV−1e > 0
B = rTV−1e
C = rTV−1r > 0

(1)

The equation for the efficient frontier is

σ2(r) =
Ar2 − 2Br + C

AC− B2 (2)

2. A Novel Set of Interpretable Efficient Frontier Coefficients

We derive an equation with the same form as Equation (2), but with more interpretable
coefficients, as

σ2(r) =
(

u−1(r− rMVP)
)2

+ σ2
MVP (3)

rMVP and σMVP are the return and standard deviation associated with the minimum
variance point (MVP). u is the rate of curvature of the efficient frontier utility function, and
represents the usefulness of the set of assets returns for mean–variance optimization. An
efficient frontier with a higher u diminishes more slowly, and therefore has better tradeoffs
of risk and return at every efficient portfolio except for the minimum variance point. We
can rearrange terms to calculate each of these more interpretable coefficients as functions of
A, B, C as shown in Equation (4).

rMVP =
B
A

, σMVP =
1√
A

, u =

√
AC− B2

A
(4)

These more interpretable coefficients each control one graphical efficient frontier
component: each coordinate of the vertex, and the rate of curvature. An increase in rMVP
implies the market demanding greater returns for all levels of risk. An increase in σMVP
implies greater risk for all returns. An increase in u signals a better market for risk-seeking
investors.

The u coefficient can be reduced to a more interpretable form in Equation (5).

u =
√

rTV−1r·
√

1− Sc(r, e)2 (5)

We can observe that u is a product of the Mahalanobis distance of the return vector to
the zero vector and a function of the cosine similarity between the return vector and the
vector of ones.
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The Tangency Portfolio Defined by Coefficients

When using a forecasted efficient frontier, we cannot find the tangency portfolio
by solving the standard optimization problem to maximize the Sharpe ratio, because it
requires knowledge of the future return vector and covariance matrix. Alternatively, with
the efficient frontier coefficients, we can solve for the return and standard deviation of the
tangent portfolio. We will start with Equation (3). The equation for the line that intersects
the efficient frontier and goes through (σ, r) is σ − σP = σ′(r)(r− rP), where σP and rP
are portfolio volatility and return, respectively. The CML must be tangent to the efficient
frontier, so we take the derivate of σ(r):

σ′(r) =
r− rMVP

u2
√
(u−1(r− rMVP))

2
+ σ2

MVP

The tangent portfolio has an intercept at the risk-free rate, so let r = r f and σ = 0,
then:

0− σTP = σ′(rTP)
(

r f − rTP

)
−
√
(u−1(rTP − rMVP))

2
+ σ2

MVP = rTP−rMVP

u2
√
(u−1(rTP−rMVP))

2
+σ2

MVP

(
r f − rTP

)
Solving for return of the tangency portfolio, rTP, yields

rTP =
r2

MVP + u2σ2
MVP − rMVPr f

rMVP − r f
and σTP = σ(rTP) (6)

Therefore, to invest in the tangent portfolio of a forecasted efficient frontier, we extract
the weights on the efficient frontier at this return.

3. Efficient Frontier Forecasting

The model uses an online vector autoregression with exogenous variables (VARX) with
lag order 1 to forecast the average efficient frontier coefficients for the forward time period
that is the same length as the lookback period used in the mean–variance optimization. In
1980, Sims [18] proposed the use of vector autoregressions in macroeconomic forecasting as
a theory-free model, which is still a particularly relevant model to this day. To demonstrate
our approach, we elected to limit our feature set to only the lag of the coefficients, and the
historical equal-weighted return moving average, as a smaller feature set is less likely to
overfit. For each model, we only selected up to two predictors to create more parsimonious
models that have greater interpretability. This regularization was incorporated into the
model by forcing coefficient parameters of the VARX model in vector notation to 0 as the
associating features were not significantly predictive in-sample.

We selected a VARX model to forecast the coefficients so that the results would
be interpretable while being able to model autocorrelation. We forecasted the 1 month
(21 business days) forward coefficients. The forecasts are online, so after each daily rolling
forecast, the current day’s coefficients are observed and then included. We elected to use
online models as static models do not update as new information arrives. Table 1 shows
the out-of-sample R2s for the three proposed online VARX models. The subscript denotes
the time the variable is measured, and the superscript denotes the window length used for
the calculation of the rolling variable. The predictors all used a 1-year (252 business days)
window, demonstrating that long-term efficient frontier coefficients can provide predictive
power to forecast the shorter-term future efficient frontier coefficients.
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Table 1. Out-of-Sample R2s of the online VARX Efficient Frontier Coefficients forecasting models.

VARX Model GVMC OoS R2 (%) Sectors OoS R2 (%)

rMVP
(21)
t+21 = β1,trMVP

(252)
t + β0,t 13 2

σMVP
(21)
t+21 = β1,tσMVP

(252)
t + β0,t 34 9

u(21)
t+21 = β2,tσMVP

(252)
t + β1,trEW

(252)
t + β0,t 1 2

While these R2s are low, these are measured out-of-sample to ensure the model is not
overfitted, and measuring R2 out-of-sample is significantly harsher than standard R2.

4. The Minimum Distance Portfolio to the Forecasted Tangency Portfolio

With the forecasted coefficients, we can find the forecasted tangency portfolio using
Equation (6). Because a forecasted efficient frontier does not provide its return vector and
covariance matrix, we cannot directly solve for the forecasted tangency portfolio weights.
In addition, the forecasted tangency portfolio likely does not exist on the current efficient
frontier given the nonstationary behavior of the market. Instead, we are able to solve for
the portfolio on the current efficient frontier that is the minimum Euclidean distance from
the current efficient frontier to the forecasted tangency portfolio, formulated as

min
r

√
(r̂TP − r)2 +

(
σ̂TP −

√
(u−1(r− rMVP))

2
+ σ2

MVP

)2

To solve this optimization problem, we can solve for the square of this objective
function because the distance function is convex and cannot be negative. This optimization
problem can be solved by taking the derivative of the square of the objective function, and
solving for the root using Newton’s Method.

0 = 2(r̂TP − r) +
2(r− rMVP)

(
σ̂TPu−

√
(r− rMVP)

2 + σ2
MVPu2

)
u2
√
(r− rMVP)

2 + σ2
MVPu2

) (7)

Now, with the return of the minimum distance portfolio to the forecasted tangency
portfolio, we can find the weights by performing mean–variance optimization at this return.
Figure 1 provides a visual of the minimum distance portfolio.
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5. Empirical Analysis
5.1. Benchmarks and Ensuring Realistic Portfolios

To select the best benchmark for our proposed model, we must determine the best
version of the tangency portfolio model. The standard tangency portfolio model is sensitive
to the update frequency and the lookback period of the historical data. More frequent
updates allow the model to use the most relevant data, so we used daily updates. A shorter
lookback period uses only the most relevant data, so we used a 1-month window.

To ensure the portfolios do not transfer all of their risk to leverage, we limited the
leverage to 1.5× with the following scaling:

∼
w<0 = w<0

l−1
2

∑(|w<0|)
and

∼
w>0 = w>0

l−1
2 + 1

∑(|w>0|)

where l is the maximum leverage allowed, and in our case, l = 1.5. While this leverage
restriction could have been added as a constraint to the optimization, we chose not to do
so, so that our empirical results can be generalized to standard tangency portfolios.

Finally, we added 1% daily transaction costs calculated by subtracting the 1% of the
sum of absolute changes in weights.

5.2. Empirical Results and Discussion

For the first set of assets, the online VARX was initially trained on 1990–1999 data,
and the portfolio returns were measured out-of-sample 2000–2022. The second set was
trained on 1999–2007 data, and the portfolio returns were measured out-of-sample 2008–
2022. We measured the performance of our proposed model against four benchmarks:
The Tangency Portfolio with a 1-month rolling window, the equal-weighed portfolio, the
S&P 500 total return, and the 60/40 stock and bonds portfolio (60% S&P 500 and 40%
FPNIX). Figures 2 and 3 show that the proposed model (black line) outperforms all the
benchmarks in terms of return and volatility. Across all years, the proposed model is able to
provide consistent returns, while suffering low drawdown during crashes, like in 2008 and
2020. The proposed model in Figure 3 is 2×-levered to provide a better visual comparison,
as the proposed model had higher Sharpe than the benchmarks, but lower return.
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Figure 3. The performance of the proposed portfolio model as compared to four benchmarks with
the S&P Sector ETFs data.

The proposed model has a greater Sharpe ratio compared to all of the benchmark
portfolios, as shown in Tables 2 and 3, for each set of assets, with high annual return relative
to max drawdown.

Table 2. Portfolio metrics for the market cap and growth/value assets from 2000 to 2022.

Portfolio Sharpe Ratio Sortino Ratio Annual Return Max Drawdown

Minimum Distance Portfolio to
Tangency rolling 1 mo 1.00 1.31 10.7% −18.7%

Tangency Portfolio rolling 1 mo 0.67 0.71 7.0% −25.0%

Equal Weighted 0.41 0.53 9.2% −50.6%

S&P 500 Total Return 0.33 0.42 8.3% −55.3%

60/40 Stocks and Bonds 0.47 0.60 5.3% −22.6%

Table 3. Portfolio metrics for the S&P sector assets from 2008 to 2022.

Portfolio Sharpe Ratio Sortino Ratio Annual Return Max Drawdown

Minimum Distance Portfolio to
Tangency rolling 1 mo 2× Levered 0.76 0.99 10.7% −29.3%

Tangency Portfolio rolling 1 mo 0.01 0.01 6.3% −25.8%

Equal Weighted 0.52 0.63 10.6% −46.7%

S&P 500 Total Return 0.48 0.58 11.2% −51.8%

60/40 Stocks and Bonds 0.57 0.69 5.5% −22.0%

We conducted alpha regression to demonstrate that the proposed model statistically
significantly outperforms the benchmarks, as shown in Table 4.



Eng. Proc. 2023, 39, 34 9 of 10

Table 4. Alpha regressions against baseline portfolios for each universe.

Universe GVMC and Bonds Sectors and Bonds

Baseline Portfolio Alpha p-Value Alpha p-Value

Tangency Portfolio rolling 1 mo 0.06 <1 × 10−4 0.10 0.0003

Equal Weighted 0.07 <1 × 10−4 0.06 0.01

S&P 500 0.06 <1 × 10−4 0.06 0.02

60/40 Stocks and Bonds 0.06 <1 × 10−4 0.05 0.02

6. Conclusions and Future Research

This paper presents a novel approach to improve out-of-sample Sharpe ratios in
comparison to investing in the tangency portfolio. This method is interpretable and does
not require input estimates like the Black–Litterman model. This approach decomposes
efficient frontiers into three interpretable coefficients: rMVP, σMVP, and u. The utility
coefficient, u, controls the rate of curvature of the efficient frontier. u measures the value of
using the set of assets in mean–variance optimization, as we show that it can be decomposed
into the Mahalanobis distance of the return vector to the zero vector and a function of the
cosine similarity between the return vector and the ones vector. This method forecasts
these coefficients using an online VARX, and determines a forecasted tangency portfolio.
This approach invests in the portfolio on the current efficient frontier that is the minimum
Euclidean distance from the forecasted tangency portfolio. Using this method out-of-
sample from 2000–2022 and 2008–2022 for the two universes, this model outperformed
four benchmark portfolios: the tangency portfolio, the equal-weighted, the S&P 500 total
return, and the 60/40. The proposed model achieved a higher Sharpe ratio compared to
these benchmarks.

While this analysis yielded significant results, there exist certain limitations that we
will investigate in future research. The results may have been dependent on the selected
assets, so we will test the model on other universes that span the market than the two we
tested. The results may also be dependent on the up to 1.5× leverage allowed, so we will
perform further analysis on the portfolio risk of using leverage. Another limitation is that
the forecasting model used a VARX with only one or two features, so for future research
we will explore whether technical indicators such as stochastic oscillators or economic
data can improve the regression. Additionally, with a larger feature set, we will employ
automated approaches such as Least Absolute Shrinkage and Selection Operator (LASSO)
and nonlinear models including decision trees.
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