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Abstract: We propose a novel approach to cluster hierarchical time series (HTS) for efficient fore-
casting and data analysis. Inspired by a practically important but unstudied problem, we found
that leveraging local information when clustering HTS leads to a better performance. The clustering
procedure we proposed can cope with massive HTS with arbitrary lengths and structures. In addition
to providing better insights, this method can also speed up the forecasting process for a large number
of HTS. Each time series is first assigned the forecast from its cluster representative, which can be
considered as “prior shrinkage” for the set of time series it represents. Then, the base forecast can be
efficiently adjusted to accommodate the specific attributes of the time series. We empirically show
that our method substantially improves performance for large-scale clustering and forecasting tasks
involving HTS.

Keywords: hierarchical time series; clustering; Wasserstein distance

1. Introduction

Time series with hierarchical aggregation constraints are commonly seen in many
practical scenarios [1]. In applications such as finance or e-commerce, an HTS normally
represents historical records from one user (e.g., the cash flow example in Figure 1). Nor-
mally, separately building a predictive model for each user is inefficient, particularly when
the number of users is quite large, or the length of user records varies significantly. To
address this problem, we design a novel clustering procedure. It effectively finds the
cluster representatives of a large group of HTS, followed by fine-tuning forecasts on these
representatives to obtain user-specific forecasts.

Clustering time series is an important tool for discovering patterns over sequential
data when categorical information is not available. Most clustering approaches fall into
discriminative and generative categories. Discriminative approaches normally define a
proper distance measure [2] or construct features [3] that capture temporal information.
Generative approaches [4] specify the model type (e.g., HMM) a priori and estimate the
parameters using maximum likelihood algorithms. Deep learning has also been applied to
time series clustering. Most state-of-the-art discriminative approaches first extract useful
temporal representations followed by clustering in the embedding space [5]. However,
there is no prior work on clustering HTS data. This problem is more challenging since
data at different level of HTS have distinct properties. Regular clustering methods for time
series lead to inferior performance, particularly when the hierarchy is complex. When

Eng. Proc. 2023, 39, 31. https://doi.org/10.3390/engproc2023039031 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2023039031
https://doi.org/10.3390/engproc2023039031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0003-0857-5506
https://orcid.org/0000-0002-7366-3548
https://doi.org/10.3390/engproc2023039031
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2023039031?type=check_update&version=1


Eng. Proc. 2023, 39, 31 2 of 11

clustering HTS, we need to leverage level-wise information, but it is difficult to completely
respect the hierarchy since the data are not easy to partition given the imposed constraints.

There is little prior work on the clustering of multilevel-structured data. A pioneering
effort [6] proposed to simultaneously partition data at both local and global levels and
discover latent multilevel structures. This work proposed an optimization objective for
two-level clustering based on Wasserstein metrics. Its core idea was to perform global
clustering based on a set of local clusters. However, this work mainly applies to discrete
and semi-structured data such as annotated images and documents. It cannot be applied to
HTS involving continuous or structured data, which has more constraints. A follow-up
work [7] extended this to continuous data by assuming that the data at the local level is
generated by predefined exponential family distributions. The authors then performed
model-based clustering at both levels. However, model-based clustering for time series is
computationally expensive and crucially depends on the modelling assumptions. Moreover,
both these works were limited to two-level structures, whereas for several HTS applications,
given a set of pre-specified features as aggregation variables, it is possible to have a
multilevel hierarchy. Note that, our problem is different from hierarchical clustering [8]:
the hierarchy comes from the time series data instead of the method that builds a hierarchy
of clusters.

In this paper, we propose HTS-Cluster, an efficient model-free clustering method that
can handle HTS with various types of individual components and hierarchies. HTS-Cluster
employs a combined objective that involves clustering terms from each aggregated level.
This formulation uses Wasserstein distance metrics coupled with Soft-DTW divergence [9]
to cater to variable length series that are grouped together. In addition to providing
superior clustering results for multilevel hierarchies, HTS-Cluster significantly improves
the efficiency of forecasts when applied to large HTS datasets containing hundreds of
thousands of time series.
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Figure 1. Left: an example of hierarchical time series (HTS) with five bottom-level time series and
three-level hierarchical structure. Each vertex (V = {vi}8

i=1) represents time series aggregated on
different variables related through a domain-specific conceptual hierarchy (e.g., product categories,
locations, etc.). Right: the summation matrix S ∈ {0, 1}8×5 used to denote the given hierarchy.

2. Backgrounds

Hierarchical time series: Given the time stamps t = 1, . . . , T, let xt ∈ Rn be the value of
HTS at time t, where xt,i ∈ R is the value of the ith (out of n) univariate time series. Figure 1
shows an example of HTS with a three-level structure. We refer to the time series at the leaf
nodes of the hierarchy as bottom-level time series and the remaining nodes as aggregated-
level time series. We split the vector of xt into m-bottom time series and l-aggregated time
series such that xt = [at bt]> where at ∈ Rl and bt ∈ Rm with n = l + m. The summation
matrix S ∈ {0, 1}n×m satisfies xt = S · bt, which can later be used to calibrate forecasting
results to be aligned with a given hierarchical structure. For notational simplicity, we omit
the time stamp of each series in the following discussion.

Dynamic Time Warping (DTW) [10]: DTW is a popular method for computing the
optimal alignment between two time series with arbitrary lengths. Given X and Y of length
T1 and T2, respectively, DTW computes the T1 × T2 pairwise distance matrix between each
time stamp and solves a dynamic program (DP) using Bellman’s recursion in O(T1 · T2)
time. DTW discrepancy can be used to describe the average similarity within a set of time
series [2]. However, DTW is not a differentiable metric given its DP recursion nature. To
address this issue, the authors of [11] proposed Soft-DTW by smoothing the min operation
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using the log-sum-exp trick. Specifically, we assume A ∈ {0, 1}T1×T2 is the alignment
matrix between two time series and C ∈ RT1×T2 is the cost matrix, the formulation of the
Soft-DTW can be written as

SDTWγ(C(X, Y)) = min
A∈A(T1,T2)

γ〈A, C〉 = −γ log ∑
A∈A(T1,T2)

exp(−〈A, C〉/γ), (1)

where γ > 0 is a parameter that controls the trade-off between the approximation and
smoothness, and A(T1, T2) is the collection of all possible alignments between two time
series. Soft-DTW is differentiable with respect to all of its variables and can be used for
a variety of tasks such as averaging, clustering, and prediction of time series. However,
Soft-DTW also has several drawbacks. Ref. [9] recently showed that Soft-DTW is not a valid
divergence given its minimum is not achieved when two time series are equal; furthermore,
the value of Soft-DTW is not always non-negative. Ref. [9] proposed Soft-DTW divergence,
which can address these issues and achieves a better performance. This divergence D can
be written as

D(X, Y) := SDTWγ(C(X, Y))− 1
2

SDTWγ(C(X, X))− 1
2

SDTWγ(C(Y, Y)). (2)

Our method incorporates the Soft-DTW divergence as a base distance measure for
variable length sequences, and use it as a differentiable loss during the clustering procedure.

Wasserstein distance: For any given subset Θ ⊂ Rd, let P(Θ) denote the space of Borel
probability measures on Θ. The Wasserstein space of order r of probability measures on Θ
is defined as Pr(Θ) =

{
G ∈ P(Θ) :

∫
‖x‖rdG(x) < ∞

}
, where ‖ · ‖ denotes the Euclidean

metric in Rd. For any P or Q in Pr(Θ), the r-Wasserstein distance Wr between P and Q is

Wr(P, Q) =

(
inf

π∈Π(P,Q)

∫
Θ2
‖x− y‖r dπ(x, y)

)1/r
, (3)

where Π(P, Q) contains all the joint (coupling) distributions whose margins are P and Q,
and the π coupling that achieves the minimum of Equation (3) is called the transportation
plan. In other words, Wr(P, Q) is the optimal cost of moving mass from P to Q, which is
proportional to the r-power of the Euclidean distance in Θ. Furthermore, by recursion of
concepts, we define Pr(Pr(Θ)) as the space of Borel measures on Pr(Θ), then ∀P′, Q′ ∈
Pr(Pr(Θ)),

W(2)
r (P′, Q′) =

(
inf

π∈Π(P′ ,Q′)

∫
Pr(Θ)2

Wr
r (P, Q) dπ(P, Q)

)1/r
.

Similarly, the cost of moving unit mass in its space of support Pr(Θ) is proportional
to the r-power of the Wr distance in Pr(Θ). The Wasserstein distance can be thought of
as a special case of the Wasserstein barycenter problem. Computation of the Wasserstein
distance and Wasserstein barycenter has been studied by many prior works, where [12]
proposed an efficient algorithm to find its local solutions. The well-known K-means
clustering algorithm can also be viewed as a method to solve the Wasserstein means
problem [6].

3. Hierarchical Time Series Clustering

In this section, we present the HTS-Cluster for clustering time series with both two-
level and multilevel hierarchical structures. We use xj,i to denote the ith univariate time
series of the jth HTS, where 1 ≤ j ≤ N and 1 ≤ i ≤ nj. We assume the index i of each
series is given by the level-order traversal of the hierarchical tree from left to right at each
level. We will use aj,i and bj,i for the corresponding aggregated and bottom-level series,
respectively.
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3.1. Two-Level Time Series Clustering

We define a new Wasserstein distance measure Wsdtw as

Wsdtw(P, Q) = inf
π∈Π(P,Q)

∫
Θ2
D(x, y) dπ(x, y). (4)

For any j = 1, . . . , N, we denote the empirical measure of all bottom-level series
as PN′ =

1
N′ ∑N

j=1 ∑
nj
i=1 δbj,i

, where N′ ≥ N given that each HTS has at least one bottom-
level series. For local (bottom-level) clustering, we assume that at most k2 clusters can
be obtained, we perform K-means that can be viewed as finding a finite discrete measure
G = ∑k2

k=1 ukδµk ∈ Ok2(Θ) that minimizes Wsdtw(G, PN′), where µk ∈ RT is the “cluster
mean” time series to be optimized in support of the finite discrete measure G and u ∈ ∆k2 ,

where ∆k =
{

w ∈ Rk : wi ≥ 0, ∑k
i=1 wi = 1

}
is the probability simplex for any k ≥ 1.

Although this approach can be extended to any aggregated level, such a method
cannot leverage the connections with adjacent levels. As Figure 2 shows, aggregation
of data will cause the loss of information: it is less likely to obtain reasonable results by
simply clustering data at the aggregated level. Therefore, we believe that with the help of
bottom-level information, clustering at the aggregated level can be further improved.
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Figure 2. Leveraging local clustering results for HTS clustering. We improve the clustering per-
formance at the aggregated level by clustering empirical distributions over cluster representatives
obtained from the bottom-level.

Problem formulation: A direct solution is to replace each top-level series with a large
feature vector obtained by concatenating all bottom-level series, but this will introduce
redundancy and require large training datasets due to the induced high dimensionality.
Instead, we propose to leverage local information by utilizing local clustering results. For
the jth HTS, we denote Fj(i) as the set that contains all descendant indices of its ith series,
and assume each top-level series aj,1 is aggregated from the bottom-level series {bj,i}i∈Fj(1).
First, we cluster all bottom-level series {bj,i}j∈[N],i∈Fj(1) into k2 clusters {Ck}k∈[k2]

with Ck

centred at µk. We then assign the following probability measure to each aj,1:

ãj,1 =
1

|Fj(1)| ∑
i∈Fj(1)

∑
k∈[k2]

1µk 1bj,i∈Ck
, (5)

that is, we represent the top-level time series as an empirical distribution of {µk}k∈[k2]
,

where the weight of each µk is determined by the number of bj,i that belongs to cluster
Ck. Note that, we distinguish ãj,1 from aj,1, where ãj,1 is its corresponding probability
measure of aj,1. This formulation represents the top-level time series using a finite number
of bottom-level clusters, reducing computation time from concatenating bottom-level time
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series while simultaneously leveraging local information. We now define the objective
function to jointly optimize both local and global clusters as follows

inf
G∈Ok2

(Θ),
H∈Ok1

(Pr(Θ))

Wsdtw(G, PN′) + W(2)
sdtw(H,

1
N

N

∑
j=1

δãj,1), (6)

where k1 is the number of clusters at the top-level, andH is the distribution over top-level
cluster centroids. Similar to each top-level time series ãj,1, the supports ofH are also finite

discrete measures. Specifically, H = ∑k1
k=1 vkδνk ∈ Pr(Pr(Θ)), where v ∈ ∆k1 , νk ∈ On̄(Θ)

and n̄ = 1
N ∑N

j=1 Fj(1). Equation (6) is our formulation for the two-level HTS clustering
problem, where the first term Wsdtw(G, PN′) is the Wasserstein distance defined in the space
of measures Pr(Θ) and the second term is defined in Pr(Pr(Θ)).

3.2. Multilevel Time Series Clustering

For HTS with multiple levels, we employ a “bottom-up” clustering procedure that
recursively uses lower-level information for higher-level clustering, till the root is reached.
We assume we are given N HTS with L levels; we denote by xl

1:N a collection of the lth-level
time series from the first N HTS and xl

1:N as the replacement of the corresponding time
series represented by lower-level clusters. We formulate the objective function to cluster
multilevel time series as

inf
G∈OkL

(Θ),

Hl∈Okl
(Pr(Θ))

Wsdtw(G, PN′) +
L−1

∑
l=1

W(2)
sdtw(H

l ,
1
G(l)

G(l)

∑
j=1

δxl
1:N [j]), (7)

where G(l) is the total number of time series at level l among N HTS. Similarly, we have
Hl = ∑kl

k=1 vkδνl
k
, v ∈ ∆kl

and νl
k ∈ On̄l (Θ). Algorithm 1 shows the full procedure of

the bottom-up clustering for HTS with arbitrary levels, while its core steps also apply to
two-level HTS clustering. Specifically, steps 4 and 5 are the centring and cluster assignment
steps for clustering time series at the Lth (bottom) level, which uses Soft-DTW divergence
as a distance measure between each input pair. After obtaining the clustering result at
the Lth-level, its cluster indices and means are used to construct probability measures for
each time series at the L− 1 level (step 8). Meanwhile, we still have access to the original
time series in the aggregated levels. Steps 10 and 11 perform clustering in the space of
probability measures. To efficiently compute the Wasserstein barycenter, we optimize the
support of the barycenter νl

k, featured as the free-support method studied in [12]. For cluster
assignment, we compute the Wasserstein distance between pairs of probability measures in
the Soft-DTW divergence space. Both the assignment and centring steps utilize information
from lower aggregation levels, where these steps are repeated until the cluster assignments
are stable. We then use the results of the cluster assignment to compute the cluster means
of the original time series at that level, used as supports of the probability measure to
represent time series in the next aggregation level, until the clustering procedure for all
levels is finished.

Computational efficiency: Compared with model-based clustering, HTS-Cluster
waives the extensive computation of HMM parameters and the data assumptions. Note
that, computing the Wasserstein barycenter at step 10 is very efficient since one just needs
to compute the Soft-DTW divergence between the supports of each distribution, which
can be obtained beforehand. The process of finding the optimal barycenter (steps 4 and 10)
is differentiable. Therefore, the clustering time is progressively reduced as we proceed to
higher levels.
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Algorithm 1 HTS-Cluster.

1: Input: L, total aggregation level; xl
1:N , collection of the lth level series from #1 to #N HTS

2: Initialize: cluster assignment: {Cl
k}k∈[kl ],l∈[L]

3: while not converged do
4: µL

k = arg minµ∈RT
1
|CL

k |
∑i∈CL

k
D(xL1:N [i], µ)

5: CL
k = {i : D(xL1:N [i], µL

k ) = min
k∈[kL]

D(xL1:N [i], µL
k )}

6: end while
7: for l = [L− 1,L− 2, . . . , 1] do
8: xl

j[n] =
1

|Fj(n)| ∑i∈Fj(n) ∑k∈[kl+1] 1νl+1
k

1xl+1
j [i]∈Cl+1

k

9: while not converged do
10: νl

k = arg minν ∑i∈Cl
k

λiWsdtw(xl
1:N [i], ν)

11: Cl
k = {i : Wsdtw(xl

1:N [i], νl
k) = min

k∈[kl ]
Wsdtw(xl

1:N [i], νl
k)}

12: end while
13: νl

k = arg minν∈RT
1
|Cl

k |
∑i∈Cl

k
D(xl

1:N [i], ν)

14: end for

HTS forecasting; Forecasts for individual HTS can “borrow strength” from the fore-
casts of the nearest cluster means at each level. Specifically, we first perform forecasts for
the bottom- and aggregated-level cluster-mean time series {µL

k }k∈[kL] and {νl
k}k∈[kl ],l∈[L−1],

respectively. The forecast for each time series can be represented as the weighted combi-
nation of forecasts of the corresponding cluster means at that level. We define the weight
between time series i and cluster mean j at level l as

wl
i,j =

1

∑kl
k=1

(
D(xl

i ,ν
l
j )

D(xl
i ,ν

l
k)

) 2
m−1

, m ∈ (1, ∞), (8)

where the closer xl
i is to a certain cluster mean, the higher its weight is. Equation (8) is

well known in fuzzy clustering, where a data point can belong to more than one cluster,
and m is the parameter that controls how fuzzy the cluster assignments are. One can use
post-reconciliation methods, such as in [1], to calibrate the results for individual forecasts.

4. Experiments

We evaluate HTS-Cluster in multiple applications. Overall, our experiments include
(1) clustering time series with multilevel structures (Section 4.1); (2) facilitating time series
forecasting with the help of clusters (Section 4.2).

4.1. HTS Clustering

Two-level HTS: We first conduct experiments on synthetic data using ARMA simu-
lations, to provide a feel for the setting and the results attainable. We generate a simple
HTS with two levels: one parent node with four children vertices, i.e., for the jth hierarchy
Xj = {xi}5

i=1, x1 = ∑5
i=2 xi. The length of each X is different, ranging from 80 to 300. We

use the following simulation function for each time series x1:T

xt = 0.75xt−1 − 0.25xt−2 + 0.65εt−1 + 0.35εt−2 + εt + c,

where εt is a white noise error term at time t, and c is an offset that is used to separate
different clusters. We simulate four clusters, each having 30 HTS as members. Additionally,
the evaluation is performed on a real-world HTS dataset containing financial records from
multiple users for tax purposes. This dataset contains 12,000 users’ electronic records
of expenses in different categories. The bottom-level time series are summed across all
categories to obtain the total expenses. Each user owns an HTS but the length of records
varies from user to user.
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Multilevel HTS: We also test our method on HTS with multiple aggregated levels. It is
simple to extend simulated two-level HTS to multiple levels by modifying the summation
matrix S. The evaluation is also performed on a large, real-world financial dataset that
contains HTS with ≥3 aggregated levels. Each HTS represents the expense records of
a small business, where the bottom level (or the lowest two levels) time series are user-
defined accounts (or sub-accounts), which are then aggregated by different tax purposes
to obtain the middle-level time series. The top-level time series are the total expenses
aggregated from the middle level, including the overall information of the business. The
dataset contains 18,568 HTS with 222,989 bottom-level time series in total.

Experiment baselines: Our baselines for evaluating HTS-Cluster include the recent
state-of-the-art method DTCR [5], which employs an encoder–decoder structure integrated
with a fake sample generation strategy. The authors of [5] showed that DTCR can learn
better temporal representations for time series data that improve the clustering perfor-
mance. Here, we implement DTCR to treat HTS as regular multivariate time series data.
In addition, we implemented independent level-wise clustering using Soft-DTW diver-
gence (Soft-DTW), i.e., without local information and clustering aggregated-level data via
simply concatenating lower-level time series (concat). We used three prevalent methods
for clustering evaluation: normalized mutual information (NMI) [13], adjusted mutual
information (AMI) [14], and adjusted rand index (ARI) [15].

Clustering results: We conducted 10 experiments, with different random seeds, on
both simulated and real datasets. As shown in Table 1 (upper), for the synthetic two-level
HTS, our method is superior to the baseline methods in both clustering performance and
computational efficiency. Specifically, in terms of clustering performance, level-wise cluster-
ing approaches are better than DTCR, at both global (aggregated) and local (bottom) levels,
since separating information from different granularities can improve the partitioning of
data. As for computation time, DTCR training consists of two stages: it first learns temporal
representations and then performs K-means clustering. This results in a longer computation
time compared with HTS-Cluster. For level-wise approaches, clustering using Soft-DTW
divergence and simple concatenation yield the same results at the bottom level, but concate-
nating bottom-level data provides better results at the top level since aggregation causes
the loss of information. Finally, the alternating updates using the global and local cluster
formulations of Equation (6), lead to improved performance due to leveraging both local
and global information. Specifically, the top-level time series are represented by empirical
distributions over bottom-level cluster means, and the cluster means at the top level can
be obtained more efficiently via fast computation of the Wasserstein barycenter. Based on
user-specified domain knowledge or constraints, we utilize the global cluster assignment
to calibrate local time series that are far from the nearest cluster centre. This procedure
improves both the local and global clustering results while simultaneously reducing the
total computation time.

HTS-Cluster also demonstrates improved performance over baseline methods on
multilevel HTS. As shown in Table 2, all methods are evaluated on HTS datasets with four
aggregation levels, where level one is the top level and four is the bottom level. Here,
HTS-Cluster employs the bottom-up procedure of Algorithm 1, where the clustering re-
sults from the lower level are leveraged for upper-level clustering until the root is reached.
Therefore, the level-wise clustering methods (Soft-DTW, Concat, and HTS-Cluster) share
the same results at the bottom level. At aggregated levels, HTS-Cluster consistently out-
performs DTCR and Soft-DTW with the help of local information and achieves a competitive
performance with Concat at a much smaller computational cost.

For the financial data, there are no cluster labels. Therefore, we use the “business
type”, included in the metadata of each HTS, as a weak “ground truth” label for clustering.
Unsurprisingly, the results metrics for all the methods are low (Table 1 bottom), and the
utility of HTS-Cluster really emerges when we examine the downstream forecasting results
later on. For now, to show that the clusters are still meaningful, we visualize the HTS
metadata at the tax code level using our method (Figure 3). We see that HTS-Cluster
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does create meaningful partitions for HTS by accounting for features from a local time
series. Finally, we monitor the level-wise clustering time of each method. The compared
baselines include (1) level-wise clustering using Soft-DTW divergence without leveraging
local clustering results; (2) simple concatenation of lower-level time series for higher-
level clustering. All three methods are conducted in a bottom-up fashion, with the same
bottom-level clustering procedure. As shown in Table 3 (left), HTS-Cluster provides
the most efficient method for clustering aggregated-level time series. This is because (1)
computing the Wasserstein barycenter at aggregated levels based on [12] is more efficient
than obtaining the barycenters using Soft-DTW divergence; (2) HTS-Cluster only leverages
lower-level clustering result instead of the entire set of time series at that level.

Table 1. Level-wise clustering results on HTS with two aggregated levels. The upper part shows the
results of simulated data. The lower part gives the results on real-world financial record data using a
weak proxy for the cluster labels.

Method\Metric Time (s) Global Local

NMI AMI ARI NMI AMI ARI

DTCR 132 0.325 ± 0.012 0.257 ± 0.023 0.21 ± 0.011 0.392 ± 0.014 0.313 ± 0.006 0.284 ± 0.009
Soft-DTW 67 0.412 ± 0.009 0.326 ± 0.019 0.277 ± 0.008 0.411 ± 0.022 0.342 ± 0.009 0.304 ± 0.014
Concat 186 0.436 ± 0.015 0.342 ± 0.014 0.314 ± 0.016 0.411 ± 0.022 0.342 ± 0.009 0.304 ± 0.014

HTS-Cluster 37 0.455 ± 0.018 0.354 ± 0.015 0.302 ± 0.013 0.424 ± 0.018 0.366 ± 0.013 0.321 ± 0.018

DTCR 72 0.065 ± 0.002 0.015 ± 0.001 0.008 ± 0.002 0.105 ± 0.011 0.059 ± 0.002 0.054 ± 0.003
Soft-DTW 49 0.119 ± 0.005 0.043 ± 0.003 0.027 ± 0.003 0.126 ± 0.008 0.082 ± 0.006 0.061 ± 0.005
Concat 174 0.135 ± 0.004 0.073 ± 0.007 0.045 ± 0.006 0.126 ± 0.008 0.082 ± 0.006 0.061 ± 0.005

HTS-Cluster 34 0.134 ± 0.005 0.075 ± 0.005 0.041 ± 0.004 0.128 ± 0.014 0.064 ± 0.005 0.065 ± 0.002

Table 2. Level-wise clustering results on HTS with multiple aggregated levels. On the left are the
results on simulated data while the right shows the results on real-world user financial record data.
Since cluster labels are not available for the financial data, scores obtained from a weak proxy are
lower than expected.

Level Metric Simulation Financial Record

DTCR Soft-DTW Concat HTS-Cluster DTCR Soft-DTW Concat HTS-Cluster

1
NMI 0.28 0.313 0.342 0.356 0.037 0.124 0.156 0.154
AMI 0.243 0.277 0.301 0.322 0.021 0.079 0.112 0.106
ARI 0.221 0.265 0.285 0.304 0.009 0.056 0.094 0.092

2
NMI 0.298 0.317 0.357 0.375 0.056 0.116 0.147 0.152
AMI 0.271 0.282 0.314 0.346 0.034 0.087 0.115 0.121
ARI 0.236 0.259 0.302 0.317 0.016 0.034 0.083 0.092

3
NMI 0.272 0.324 0.364 0.372 0.055 0.134 0.163 0.172
AMI 0.234 0.295 0.322 0.33 0.028 0.098 0.132 0.141
ARI 0.217 0.268 0.307 0.309 0.012 0.057 0.106 0.113

4
NMI 0.303 0.369 0.369 0.369 0.076 0.136 0.136 0.136
AMI 0.275 0.341 0.341 0.341 0.043 0.102 0.102 0.102
ARI 0.264 0.316 0.316 0.316 0.026 0.061 0.061 0.061
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Figure 3. Word cloud visualization of time series metadata from massive financial records. The
keywords represent different types of expenses for tax purpose. The results show keywords from
three representative clusters at the expense level, by leveraging the local information of clustering
results obtained at the user level. The clusters provide meaningful partitions, such as “payroll
expenses”, “administrative expenses”, and “service cost”, which are from distinct categories.

4.2. HTS Forecasting

We propose two forecasting applications that can utilize our proposed method. We
use the mean absolute scaled error (MASE) [16] to evaluate the forecasting accuracy.

Case 1: Forecast single-HTS with complex structure: Many public datasets comprise
a single hierarchy that includes a large number of time series; this is common when HTS
has many categorical variables to be aggregated. Forecasting a large number of correlated
time series requires extensive computation for global models or parameter tuning for local
models. HTS-Cluster provides an efficient way of modelling such HTS. For the bottom
k-levels that have large numbers of time series, one just needs to forecast their cluster means
obtained from clustering “sub-trees” at these levels. The forecasts of each time series at
the bottom k-levels can be “reconstructed” using a soft combination of cluster means in
Equation (8). We test our method using two popular models: DeepAR [17] and LSTNet
[18] and two public HTS: Wiki and M5 [19]. In Table 4, this strategy achieves competitive
results with less computation compared with the original methods. This could also improve
aggregated levels without applying clustering.

Table 3. Left: level-wise computation time of different clustering approaches, DTCR is excluded
since it is not a level-wise approach and requires a much longer time. Right: forecasting massive HTS
with the help of clustering, results are measured by MASE and relative computing time. Results are
averaged across ten runs on four-level simulated HTS.

Method \
Level 1 2 3 4 Total Time

1 2 3 4
Aggregation Level
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Cluster Time by Level
Soft-DTW 
Concat
HTS-Cluster

Without
cluster 62.39 76.26 78.25 84.14 1

DTCR 82.35 96.09 104.85 104.33 0.39

Soft-DTW 78.61 93.04 93.12 96.76 0.27

Concat 74.24 84.65 83.73 96.76 0.57

HTS-Cluster 72.99 80.07 85.29 96.76 0.16
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Table 4. HTS-Cluster can be used to improve HTS forecasting when a large number of forecasts are
required. Results are measured by the mean absolute scaled error (MASE, the lower the better) using
two multivariate time series models. Both Wiki and M5 possess a single hierarchy with many time
series; we cluster “sub-trees” at the bottom two levels (out of five) of Wiki and the bottom three levels
(out of twelve; we only show levels eight to twelve) of M5 to reduce the total number of time series to
be modelled.

Dataset Wiki M5

Levels 1 2 3 4 5 8 9 10 11 12

LSTNet 76.36 76.89 79.65 81.13 86.22 63.74 69.43 73.35 76.46 82.36
LSTNet-
Cluster 76.33 76.56 77.68 78.07 95.16 62.48 69.14 71.11 76.52 98.78

DeepAR 73.98 74.54 77.42 79.12 84.77 59.36 67.18 72.04 76.41 80.24
DeepAR-
Cluster 74.21 74.37 77.36 77.56 89.67 58.74 65.46 74.39 75.04 90.49

Case 2: Forecast massive HTS with simple structures: Similarly, we forecast cluster
means obtained from each level of HTS, and then use Equation (8) to obtain a prediction
for each HTS. To ensure forecasts are consistent with respect to the hierarchy, we apply
reconciliation from [1] to the forecasts of each HTS. Table 3 shows the effectiveness of the
clustering, where the total time is normalized by the method without cluster. From the re-
sults, HTS-Cluster can greatly reduce the overall computation time without compromising
the forecasting accuracy.

5. Conclusions

In this paper, we addressed an important but understudied problem for clustering
time series with hierarchical structures. Given that time series at different aggregated
levels possess distinct properties, regular clustering methods are not ideal. We introduced
a new clustering procedure for HTS such that when clustering is conducted at the same
aggregated level it simultaneously utilizes clustering results from an adjacent level. In
each clustering iteration, both local and global information are leveraged. Our proposed
method shows improved clustering performance in both simulated and real-world HTS
and proves to be an effective solution when a large number of HTS forecasting is required
as a downstream task. For future work, we plan to extend this framework to model-based
clustering for HTS with some known statistical properties.
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