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Abstract: Functional data analysis has demonstrated significant success in time series analysis.
In recent biomedical research, it has also been used to analyze sequence variations in genome-
wide association studies (GWAS). The observations of genetic variants, called single-nucleotide
polymorphisms (SNPs), of an individual are distributed over the loci of a DNA sequence. Thus, it can
be regarded as a realization of a stochastic process, which is no different from a time series. However,
SNPs are usually coded as the number of minor alleles, which are categorical. The usual least-square
smoothing in FDA only works well when the data is continuous and normally distributed. The
normality assumption will be violated for categorical SNP data. In this work, we propose a two-
step method for smoothing categorical SNPs using a novel method and constructing haplotypes
having strong associations with the disease using functional generalized linear models. We show its
effectiveness through a real-world PennCATH dataset.

Keywords: stochastic process; functional data analysis; genome-wide association study; epistasis;
haplotype; variable selection

1. Introduction

Functional data analysis (FDA) is a common tool for analyzing complex datasets that
are collected over a sequence, such as time and location. It is based on the assumption that
there is an underlying stochastic process represented by a continuous function xi(t), but the
data can only be observed at discrete time points or locations. To overcome this challenge,
FDA represents the datasets as functions or curves by smoothing the observations. FDA
has found extensive application in many fields related to time series analysis. Examples
include predicting stock prices, discovering geophysical and meteorological patterns, and
forecasting traffic volumes. Recently, there has been increasing interest in using FDA in
biomedical research, such as genome-wide association studies (GWAS).

GWAS aim to find associations between single-nucleotide polymorphisms (SNPs) and
diseases or traits by case–control studies, providing insights into the genetic risk factors
for diseases and offering opportunities for preventive measures and treatments [1]. As
a result, GWAS plays a critical role in personal genomics, and thousands of GWAS have
been conducted over the past few decades. Fan et al. [2] have highlighted that genetic
variant data can be viewed as a collection of random variables forming a stochastic process,
and can be treated as functional data. One of the key advantages of FDA in GWAS is its
ability to naturally incorporate the correlation, linkage, and linkage disequilibrium (LD)
information of the genetic variants into the association tests. FDA can capture the complex
dependency structure and higher order LD among the genetic variants, which is often
missed by other methods such as the sequence kernel association test (SKAT) [3] and its
optimal unified test (SKAT-O) [4]. Another advantage of the functional data representation
is its suitability for large-scale genomic data, providing a computationally efficient way to
test the association between multiple variants and the phenotype.
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In their work, Fan et al. [2] proposed two methods for fitting the discrete SNP
values: either using ordinary least-square smoothers, or approximating SNPs with K
functional principal components. The effectiveness of FDA in GWAS, as demonstrated by
Fan et al., has also been confirmed in the subsequent studies [5–7]. Nevertheless, SNPs are
typically coded as the number of minor alleles, resulting in categorical data that violates
the normality assumption required for the least-square smoothing. The objective of this
paper is to propose a more robust approach to represent genetic variants using functional
data analysis, which addresses the problem of normality assumption violation in the least-
square smoothing method. In addition, we introduce a two-step method that integrates our
novel smoothing method with functional generalized linear models to identify haplotypes,
i.e., blocks of SNPs, that are strongly associated with the phenotype.

Our proposed approach is described in detail in the following sections. In Section 2,
we describe the PennCATH dataset used in our experiments and explain our two-step
method, which includes curve smoothing and variable selection by regression analysis, for
identifying haplotypes associated with the phenotype. Section 3 presents the performance
of our method, compared with single SNP test results and haplotypes constructed based
on genetic information. In Section 4, we discuss the strengths and limitations of our
approach, as well as possible future directions. We conclude the work in Section 5 by
summarizing our findings and emphasizing the potential impact of our approach on
genetics and genomics research.

2. Materials and Methods
2.1. GWAS Data

In GWAS, SNPs are often coded as the number of minor alleles observed at a given
locus. For a particular locus, there are two alleles on a homologous chromosome pair,
and the SNPs can be coded as 0, 1, or 2. As an example, if 90% of the genomes have
nucleotide A at the locus, and 10% have T, this locus would be an SNP with two alleles.
The nucleotide A, the more common allele, is referred to as the major allele or reference
allele, while T, the less common allele, will be the minor allele or non-reference allele.
Consequently, a genotype of AA is coded as 2, AT or TA as 1, and TT as 0. Section 3 of
this paper will present a GWAS example using the PennCATH dataset. PennCath [8] is
a GWAS of coronary artery disease (CAD) conducted by the University of Pennsylvania
Medical Centre. The study has recruited 3850 patients undergoing cardiac catheterization
and coronary angiography between 1 July 1998 and 31 March 2003. All of the patients have
provided written informed consent. Their age, gender, ethnicity, medical history, physical
exams, and other clinical data have been extracted from their medical records. The samples
in PennCath are genotyped by the calling algorithm “Birdseed”, offered by the Affymetrix
Genome-Wide Human SNP Array 6.0 platform. The dataset comprises 656,890 SNPs from
1401 patients after a quality control procedure [9]: 933 patients with coronary artery disease
(CAD) and 468 with no or minimal CAD. In this work, 3758 SNPs on Chromosome 9p21
are extracted and divided into 4 chunks of equal window size. It is expected to find strong
associations between some of the SNPs at around 9p21.3 (position 19.9Mb to 25.6 Mb) and
CAD according to previous studies [10–12].

2.2. Curve Smoothing

The characteristics of FDA make it natural to apply FDA to numerical data, but it may
not seem to be applicable to categorical data such as SNPs. To address this issue, we make
a different assumption about the underlying stochastic curves. Instead of assuming that
all the categorical values k = 0, . . . , K− 1 came from a single underlying curve xi(t), we
assume there are K probability curves pik(t) associated with the continuum t. Hence, an
observation yij can be seen as a sample drawn from a categorical distribution:

yij ∼ Categorical(pi0(tij), ..., piK−1(tij)) (1)
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The probability curves for any sample i at any position t need to follow the law of total
probability and lie between 0 and 1:

K−1

∑
k=0

pik(t) = 1

0 < pi0(t), ..., piK−1(t) < 1

In the case where the categorical observations k = 0, ...K − 1 can be regarded as the
number of “success” events in K− 1 trials, yij can be treated as a sample from the binomial
distribution:

yij ∼ Binomial(n = K− 1, p = pi(tij)) (2)

in which the probability of “success” depends on the value of a single probability curve
pi(tij). The bounds of 0 and 1 for probabilities still apply in this setting. In both (1) and (2),
the rationale behind smooth probability curves assumption naturally accommodated the
correlations among adjacent SNPs: for any two SNPs j and j′ of an individual i, if the SNPs
have close positions tij and tij′ , they should have similar probabilities for minor alleles.
Therefore, the probabilities are assumed to change smoothly as the position varies.

In minor-allele SNP coding, SNPs are coded as categorical variables 0, 1, and 2. There
are at least two ways to represent SNPs with functional data. The first method is to consider
them as 3 unordered categories with probabilities

P(SNPij = 0) = pij0

P(SNPij = 1) = pij1

P(SNPij = 2) = pij2

which has weak assumptions on interdependence among the categories. The observations
of SNPs can then be adapted into the FDA framework based on Assumption (1) with K = 3.
However, each sample will be determined by two probability curves, which may give too
much flexibility in fitting the data. In Assumption (2), SNPs are regarded as the outcome of
2 binomial trials with probability p, which is also a reasonable interpretation since each
SNP is equivalent to the number of occurrences of the less common allele in two alleles
at a position. With the Hardy–Weinberg Equilibrium (HWE) principle, which states that
“genotype frequencies in a population remain constant between generations in the absence
of disturbance by outside factors” [13], the occurrences of minor alleles in the two alleles
are independent of one another, and the probability of each outcome will be as follows:

P(SNPij = 0) = (1− pij)
2

P(SNPij = 1) = 2pij(1− pij)

P(SNPij = 2) = p2
ij

In GWAS, the check of violations of HWE is usually part of the quality control. The
departures from HWE can indicate potential genotyping errors [14,15], and it is a common
practice to remove those SNPs from the studies. Therefore, it is reasonable to make HWE
assumptions about the probabilities for minor alleles, and the functional representation
can also be built on (2). In either setting, the probabilities vary between individuals and
over SNP positions. Therefore, we can find the associations between the differences in their
probability curves and the target disease. In this paper, we will be converting the observed
SNP into functional data based on Assumption (2).

Smoothing for probability curves of SNP data is an example of curve smoothing with
constraints. One solution to this is to transform them into unconstrained curves. For SNP
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data, fitting the probability curves can be achieved by fitting the following unconstrained
log-odds curves:

gi(t) = log
pi(t) + α

(1− pi(t)) + α
(3)

where α is a Laplace smoothing parameter set to 0.01 to avoid zero probabilities. Once the
log-odds curves have been smoothed, they can easily be transformed back to probability
curves pi(t) by the logistic function. To smooth the log-odds curves, we can use maximum
likelihood estimation (MLE) to solve for the coefficients iteratively with gradient descent.
Alternatively, we can smooth the empirical log-odds values (−4.62, 0, 4.62) that are trans-
formed from the empirical probabilities (0, 0.5, 1) for categorical SNP observations of (0,
1, 2), respectively. This transformation brings the values closer to a normal distribution,
enabling us to obtain a better approximation via least-square smoothing.

2.3. Variable Selection through Regression Analysis

Finite-dimensional regression models such as GLMs and MLMs are commonly used
in GWAS. These models treat the phenotype or disease as the response variable, and the
SNPs as explanatory variables. By examining the coefficients and p-values of the SNPs,
we can determine which SNPs are strongly associated with the phenotype/disease. Sim-
ilar to the finite-dimensional regression models, coefficients and p-values in functional
regression models can also indicate the relationship between phenotype and covariates
through the “scalar-on-function” model. Depending on the response data type, the model
can be a functional linear regression or a functional logistic regression. When the pheno-
type is continuous Vi, such as height or blood pressure, a functional linear model can be
employed, where β0 is a scalar intercept term and β(t) is the functional coefficient of the
probability curve:

Vi = β0 +
∫

β(t)pi(t)dt + εi (4)

On the other hand, when the phenotype Vi is binary, such as a disease indicator, the
probability of the individual having the phenotype, πi = Pr(Vi = 1), can be modeled by:

log(
πi

1− πi
) = β0 +

∫
β(t)pi(t)dt (5)

Due to the complication of GWAS data, there may be some confounding factors making
it difficult to find the true relationships between probability curves and the target disease.
These factors can be accounted for by including them in the regression model. Therefore,
the final disease-SNP model that accounts for age, sex, and population substructure can be
formulated as:

log(
πi

1− πi
) = β0 + β1agei + β2sexi + β3pci1 + ... + β12pci,10 +

∫
β(t)pi(t)dt (6)

The number of basis functions q(β) for β(t) needs to be carefully selected. If q(β)

is too large, β(t) will have more curvature and may be capturing noise instead of sig-
nals in pi(t). A common method to determine q(β) is to select the value that minimizes
AIC = −2l + 2q(β) such that each additional basis function in β(t) should significantly
increase the log-likelihood in order to justify a lower AIC value.

In regression analysis, determining if an explanatory variable has a statistically sig-
nificant association with the response variable requires taking into account not only the
coefficient but also the standard errors of the estimated coefficients. The same principle
applies to functional regression analysis. The statistically significant SNPs can be found by
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examining the confidence band of β(t), which connects the point-wise confidence intervals
of β(t) at each position t:

b̂Tφ(t)± zα/2

√√√√q(β)

∑
k=1

q(β)

∑
l=1

φk(t)φl(t)Cov(bk, bl)

where φ(t) is a set of basis functions for β(t), and b is a vector of coefficients corresponding
to the basis functions.

3. Results

In our experiments, we aim to evaluate the performance of our two-step method
in identifying important SNPs by comparing it with single SNP tests and genetic-based
haplotypes using real-world data from the PennCATH study of coronary artery disease
(CAD). We will use two different approaches to create genetic-based haplotypes: a fixed
number of SNPs and a fixed window size. For these haplotypes, we will conduct GWAS by
fitting logistic models. In contrast, for our FDA-based haplotypes, we will use functional
logistic models to analyze all SNPs at once and identify haplotypes with strong associations
with the target disease.

3.1. Single SNP Tests

The single SNP test is an association analysis that regresses the phenotype on each
SNP separately. While it can identify SNPs with large marginal effects on the phenotype,
it does not consider epistatic effects among the SNPs. The test results shown in Figure 1
(left) are based on logistic models fitted on each SNP using CAD as the response, adjusted
for confounding factors. By setting the threshold for p-value to 10−3, we identify 9 signif-
icant SNPs between position 22064465 and 22125503. Additional information about the
significant SNPs and their test results is provided in Table 1.

Table 1. Single SNP tests found 9 SNPs strongly associated with CAD in chromosome 9p21 with
p-value < 10−3.

SNP Position Estimate Std. Error t-Value p-Value

rs6475606 22081850 −0.445673 0.092841 −4.800395 1.583531 × 10−6

rs1333049 22125503 −0.442759 0.094169 −4.701767 2.579192 × 10−6

rs4977574 22098574 −0.436480 0.094321 −4.627610 3.699095 × 10−6

rs2891168 22098619 −0.432042 0.094221 −4.585422 4.530707 × 10−6

rs1333042 22103813 −0.431915 0.094976 −4.547645 5.424963 × 10−6

rs10757272 22088260 −0.421598 0.094232 −4.474050 7.675192 × 10−6

rs1333048 22125347 −0.404207 0.094842 −4.261892 2.027037 × 10−5

rs10757270 22072719 0.389317 0.094121 4.136343 3.528847 × 10−5

rs8181047 22064465 −0.425314 0.109852 −3.871706 1.080763 × 10−4

3.2. Genetic Haplotypes

We used two common approaches to construct the genetic-based haplotypes: (1) blocks
containing a fixed number of SNPs and (2) fixed genomics window of size. In these two
approaches, we have constructed blocks containing 5, 10, 20, and 50 SNPs and blocks with
window sizes 10 kb, 20 kb, 50 kb, and 100 kb, respectively. It ends up with 1392 blocks
generated for (1) and 2394 blocks generated for (2).

To compute the p-value of each haplotype, we fit a GLM for each haplotype while
adjusting for confounding factors and compare it to a base model with only an intercept
and confounding factors. However, due to missing values in our genotype data, samples
containing missing values for any SNP in a haplotype were excluded when fitting the
models. To ensure sufficient data for fitting GLMs, we imputed missing values using the
most frequent value (mode) for each SNP before computing the p-values.
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Applying the same p-value threshold of 10−3 as we did for single SNP tests, we found
9 significant blocks associated with CAD using Approach (1) and 11 significant blocks
using Approach (2). Figure 1 (middle) displays the positions of the significant blocks,
which are primarily located around 22 Mb with a few at around 24 Mb. These findings are
consistent with our results from single SNP tests, which identified significant single SNPs
near 22 Mb. The haplotypes at around 24 Mb have larger p-values (>10−4) as compared
with the haplotypes at 22 Mb. Therefore, they could be considered as noise instead of
true associations. Table 2 provides further details on the significant blocks, including their
p-values.

Figure 1. (Left) Manhattan plot displaying the distribution of p-values for 3758 SNPs located on chro-
mosome 9p21 in relation to their genomic position. (Middle) Genetic-based haplotypes constructed
using a fixed number of SNPs and fixed window size that showed significant associations with CAD.
(Right) Estimate and 95% confidence bands of β(t) in functional logistic model using 3758 SNPs.

Table 2. Significant genetic haplotypes found by fixed SNP and fixed window size methods.

Method Haplotype No. Position Number of SNPs p-Value

SNP-5

1 22073334–22088260 5 1.522134 × 10−5

2 22098574–22125503 5 1.941005 × 10−4

3 22128709–22133251 5 9.663982 × 10−5

4 24095607–24112974 5 1.712341 × 10−4

SNP-10
5 22073334–22125503 10 2.645748 × 10−4

6 22128709–22136489 10 6.936598 × 10−5

7 24075082–24112974 10 9.016075 × 10−4

SNP-20 8 22073334–22136489 20 1.599449 × 10−4

SNP-50 9 24018470–24233746 50 8.881007 × 10−4

LEN-10k

10 22070008–22080008 2 1.605103 × 10−4

11 22080008–22090008 4 5.748821 × 10−6

12 22090008–22100008 2 1.189989 × 10−5

13 22100008–22110008 1 3.743386 × 10−6

14 22120008–22130008 3 1.541748 × 10−5

LEN-20k

15 22060008–22080008 5 1.955793 × 10−4

16 22080008–22100008 6 1.896116 × 10−5

17 22100008–22120008 1 3.743386 × 10−6

18 22120008–22140008 15 4.555725 × 10−4

LEN-50k 19 22100008–22150008 17 2.301992 × 10−4

LEN-100k 20 22100008–22200008 30 9.809913 × 10−4

3.3. Two-Step FDA Approach

In the two-step approach, we construct the FDA-based haplotypes based on the
functional GLM coefficients, as explained in Section 2. This involved smoothing the log-
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odds curves g(t) using 64 cubic spline basis functions to approximate the genotype, with
the positions of the SNPs in the genome treated as the continuum t for the functions. Then,
we transform the log-odds curves back to probability curves and fit the functional logistic
model as described in Equation (6). In regression analysis, we used AIC to select the
appropriate number of basis functions for β(t), resulting in q(β) = 4 cubic spline basis
functions with AIC = 1440.4. The confidence bands of the estimated coefficient curve are
displayed in Figure 1 (right). However, in a large number of SNPs, small signals in the
SNPs may be overlooked. In fact, the confidence bands in Figure 1 barely found any signals
in SNPs. As a result, we divided the SNPs into four chunks with an equal window size
of approximately 3.3 Mb per chunk and fit the curves independently. For each chunk, the
number of basis functions for SNPs q(SNP) was set to 64. The number of bases for β(t) in
the functional logistic models of the four chunks were chosen as q(β) = 18 (AIC = 1442.4),
q(β) = 5 (AIC = 1444.3), q(β) = 4 (AIC = 1442.2), and q(β) = 4 (AIC = 1442.0) in the model
selection. The final estimated coefficient curves and their confidence bands for all four
chunks are presented in Figure 2.

The plots suggest that SNPs located around 22 Mb exhibit strong associations with
the phenotype, CAD. The confidence bands indicate strong positive associations of 68
SNPs in the position range of 21986218 to 22219365 at the 5% significance level. When the
significance level is 1%, the number of SNPs with significant associations is reduced to 62
in the position range of 21988896 to 22176961. It is worth noting that there are some weak
associations between CAD and a small number of SNPs located at 19914792 to 19915135,
20028452 to 20057787, and 21747672 to 21869079. These associations are significant at 5%
significance level but not at 1%, and therefore, are considered noises rather than signals.

Figure 2. Coefficient curve β(t) with its 95% confidence band. It indicates significant associations
between CAD and SNPs in Chunk 1 at around position 22.1 Mb only.

4. Discussion

As stated in Section 2.1, we anticipated finding associations between SNPs in 9p21.3
and CAD. In our experiments, all three methods identified significant SNPs and haplotypes
within this region (19.9 Mb to 25.6 Mb). Specifically, the SNPs with the smallest p-values in
single SNP tests were located between 22.06 Mb and 22.13 Mb, while most of the strongly
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associated haplotypes in genetic haplotypes were found at 22.06 Mb to 22.20 Mb. Similarly,
in FDA haplotypes, the most significant haplotype was found around 21.98 Mb to 22.22 Mb.
Notably, in the region where these associations were detected, two genes, cyclin-dependent
kinase 2A and 2B: CDKN2A (21.97 Mb to 21.99 Mb) and CDKN2B (22.00 Mb to 22.01 Mb),
have been implicated in conferring risk for CAD in multiple studies [16–18], thus validating
our findings.

5. Conclusions

In this paper, we presented a novel method for smoothing the categorical SNP data in
GWAS and demonstrated its effectiveness in identifying haplotypes strongly associated
with disease using the PennCATH dataset. The FDA haplotypes successfully retrieved all
significant regions in the SNPs while maintaining low false-positive rates at low signifi-
cance levels. Both functional and non-functional methods were successful, but the main
advantage of the functional method is its ability to efficiently identify important SNPs with-
out an exhaustive search while naturally incorporating spatial information and correlation
among SNPs into the regression models. Additionally, in the presence of missing values, it
implicitly imputes the missing SNP values when smoothing the curves, eliminating the
need to exclude or impute missing values in SNPs. This prevents it from getting biased
results when missing values are not handled correctly. There is not a large discrepancy
between the curves smoothed directly by the least-square method and the curves smoothed
by our novel approach. However, our approach, which considers the data as binomial prob-
ability curves, has better interpretability and resolves the issue of violating the normality
assumption.
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