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Abstract: This work presents dynamic Tikhonov state forecasting based on large-scale deep neu-
ral network constraint for the solution to a dynamic inverse problem of electroencephalographic
brain mapping. The dynamic constraint is obtained by using a large-scale deep neural network
to approximate the dynamics of the state evolution in a discrete large-scale state-space model. An
evaluation by using neural networks with several hidden layer configurations is performed to obtain
the adequate structure for large-scale system dynamic tracking. The proposed approach is evaluated
over two models of 2004 and 10,016 states in discrete time. The models are related to an electroen-
cephalographic problem for EEG generation. A comparison analysis is performed by using static and
dynamic Tikhonov approaches with simplified dynamic constraints. By considering the obtained
results it can be concluded that the deep neural networks adequately approximate large-scale state
dynamics by improving the dynamic inverse problem solutions.

Keywords: dynamic state forecasting; deep neural network; large scale

1. Introduction

Deep neural networks (DNNs) have emerged as promising tools for state estimation.
DNNs can learn complex non-linear relationships between inputs and outputs, making
them well-suited for estimating dynamic systems. Additionally, DNNs can handle high-
dimensional data and can be adapted to handle various state estimation problems. For
example, Zhang et al. [1] and Li et al. [2] discussed the impact of deep learning on the field of
inverse problems, with the former proposing a residual learning-based deep convolutional
neural network (CNN) approach for image denoising. They reviewed existing work in
this area and covered the basics of deep learning and its application for inverse problems.
However, Zhang et al. [3] and Chien et al. [4] focused on the use of Tikhonov regularization
for training DNNs. Zhang et al. [1] used the convergent block coordinate descent (CBCD)
algorithm for training with Tikhonov regularization, showing its effectiveness through
experimental results on various datasets. Chien et al. [4] explored the use of Tikhonov
regularization in acoustic modelling, showing that adding Tikhonov regularization can
improve the generalization performance of DNNs.

In order to solve inverse problems using DNNs and regularization, in Fkham, et al. [5]
the authors developed a DNN-based method for automatically learning the regularization
parameters in inverse problems, resulting in improved accuracy and robustness. Alter-
natively, Nguyen et al. [6] incorporated prior knowledge about the inverse problem into
the network architecture, resulting in improved accuracy and robustness compared to
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traditional DNN-based methods. Furthermore, Romano et al. [7] developed a method
called regularization by denoising (RED) for inverse problems, using a deep denoising
neural network to regularize the solution of an inverse problem. In contrast, Mao et al. [8]
introduced a deep learning-based approach for image restoration using a profound convo-
lutional encoder–decoder network architecture with symmetric skip connections to handle
the inverse problem and the experimental results that demonstrate the effectiveness of the
proposed approach were tested on several benchmark datasets.

According to Kolowrocki et al. [9], large-scale complex systems need to be modelled in
order to identify the cross-correlation of variables through their inherent complex dynamics.
In many cases, their dynamics are hard to describe using non-linear equations due to their
inherent couplings and complexity. As Sockeel et al. [10] reported, electroencephalographic
signals are a clear example of large-scale systems where the discrete state-space model
is represented by a large-scale non-linear state evolution equation and a measurement
equation. The state estimation in EEG is an ill-conditioned, ill-posed inverse problem that
requires additional constraints to be solved adequately as Sanchez-Bornot [11] mentioned.
In many cases, as Wang et al. [12] reported, the number of states to be estimated is large
and requires high-performance computing.

This paper proposes a dynamic Tikhonov state forecasting method based on large-
scale DNNs as dynamic constraints, evaluated for the solution to an EEG inverse problem
for neural activity estimation and compared with the static version of the method. The
non-linear dynamic of state evolution is approximated by using the non-linear structure
of the DNNs for two brain models with 2004 and 10,016 sources in which the EEG dy-
namics are simulated and approximated using the state measurements. Qualitative and
quantitative analysis is performed for the state estimation for dynamic tracking, where the
quantitative analysis is measured in terms of the least-squared estimation error. As a result,
an improvement in the dynamic tracking of the EEG is achieved for the proposed dynamic
Tikhonov based on the DNN approach obtained in comparison with the static and dynamic
Tikhonov approaches.

The paper is organized as follows: in Section 2 the dynamic Tikhonov structure based
on DNN constraints is presented; in Section 3, the state forecasting results for the proposed
approach and the static and dynamic Tikhonov approaches are shown. Finally, in Section 4,
the conclusions and final remarks are presented.

2. Materials and Methods
2.1. Forward Dynamic Problem

The measurements equation for the state-space representation of the EEG dynamics
can be described as follows:

yk = Axk + εk (1)

where yk are the vector time series measurements at time k, xk is the state vector, and A is
the lead-field matrix. In addition, the intrinsic dynamic evolution of the states xk is defined
through a non-linear differences equation, as follows:

xk = f (xk−1, xk−2, . . .) + ηk (2)

where f is a non-linear dynamic difference equation that describes the state evolution. The
structure of f (.) can be defined as a non-linear physically motivated model, as used in [13].

2.2. Dynamic Tikhonov Based on DNN

Consider a cost function defined by

Jk = ‖yk − Axk‖2
2 + λ2‖xk − x−k ‖

2
2 (3)
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where x−k the a priori state estimation, and where the solution can be computed as

x̂k = (AT A + λ2 I)−1(ATyk + λ2x−k ) (4)

In this work, the a priori estimation is performed by using a DNN in order to consider
the dynamic evolution of the states, therefore approximating the function described in (2)
as follows

x−k = Φ(x̂k−1) (5)

where Φ is the DNN. Therefore,

Jk = ‖yk − Axk‖2
2 + λ2‖xk −Φ(x̂k−1)‖2

2 (6)

where the solution for state forecasting can be computed as

x̂k = (AT A + λ2 I)−1(ATyk + λ2Φ(x̂k−1)) (7)

The DNN in Figure 1 shows the structure of the DNN Φ of (5), used to approximate
f in (5). It has an input layer xk−1, three hidden layers which are all fully connected, and
an output layer xk with two outputs.

x�₋₁

Input layer Hidden layers Ouput layer

x�.
.
.

.

.

.

.

.

.

Figure 1. DNN used to consider the dynamic evolution of the states in the Tikhonov method.

3. Results
3.1. Experimental Setup

In order to evaluate the performance of the proposed dynamic Tikhonov approach
based on DNN dynamic constraints, a simulation of the time series corresponding to
the EEG was performed using Equations (1) and (2). To this end, the lead-field matrix
corresponding to the New York head model was used [14].

The model considered two different source configurations, a detailed representation
of which can be seen in Figure 2.
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Figure 2. New York head model was selected for two source configurations: a model with n = 2004
sources, and a model with n = 10,016 sources.

The non-linear function for states evolution f (.) was simulated considering the struc-
tures proposed in [13] as follows:

xk = A1xk−1 + A2xk−2 + A3x◦2k−1 + A4x◦3k−2 + A5xk−η (8)

where ◦ is the Hadamard product and η is the delayed state. The simulation of the EEG was
developed considering A1 = 0.8I, and A2, A3, A4, and A5 equal to zero. The approximation
of the function f was performed by the DNN Φ by using a structure with three hidden
layers, ReLU activation functions and an L2 regularization parameter to avoid overfitting
and reduce model complexity to improve performance on the test data. A comparative
analysis in terms of the least-squared error was performed considering the static and
dynamic Tikhonov approaches. The implementation of the proposed DNN approach was
performed in Python using TensorFlow.

Figures 3 and 4 show the simulated EEG using a brain model with 2004 and 10,016 states
of four EEG time series measurements, respectively.
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Figure 3. Simulated EEG for a head model with 2004 states. (a) Two channels of simulated EEG:
channels 1 and 2. (b) Two channels of simulated EEG: channels 3 and 4.
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Figure 4. Simulated EEG for a head model with 10,016 states. (a) Two channels of simulated EEG:
channels 1 and 2. (b) Two channels of simulated EEG: channels 3 and 4.
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3.2. State Forecasting Results

The state forecasting results show that the proposed dynamic Tikhonov based on the
DNN approach achieves the closest fit to the trustworthy sources, as evidenced by the
lower estimation error compared to the static and dynamic Tikhonov approaches, as shown
in the following graphs for the two models and the estimation with different hidden layers.
Results were obtained by testing the New York model for 2004 and 10,016 states, comparing
the behaviour of the data estimates with different architectures, making variations from zero
layers, for a simple linear regression model, to three layers, obtaining the best performance
with the dynamic Tikhonov based on the DNN approach.

Real and estimated states using the Tikhonov and dynamic Tikhonov based on the
DNN are shown in Figures 5 and 6 using one and three hidden layers, respectively. Four
states (10, 600, 1200, and 2000) were used for the model to adequate estimate the behaviuor
of the source in different states. In all four cases, it can be seen that the behaviour of the
dynamic Tikhonov based on the DNN approach overcomes the Tikhonov approach, and
that the three-layer architecture achieves a better performance compared to the one-layer
architecture. In order to observe the behaviour of the implemented methodology, a test
with a 2004-state model (considered small) was made.
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(b) One-layer state 600
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(c) One-layer state 1200

0 10 20 30 40 50
Time [ms]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

O
ut

pu
t 

St
at

e 
[2

00
0]

Estimate DNN
Estimate Tikhonov
Real

(d) One-layer state 2000

Figure 5. Output estimation for the one-layer architecture of the Tikhonov and dynamic Tikhonov
based on the DNN models for 2004 states.

Once several architectures for the model with 2004 states were tested, they were
extrapolated to a model with 10,016 state to observe the dynamic behaviour of the system
with Tikhonov and dynamic Tikhonov based on DNN approaches. This comparison for
the architectures was also made for the model with 10,016 states. Figures 7 and 8 show the
results obtained by using one and three hidden layers, respectively. Four states (states 100,
2500, 5000, and 10,000) were used to observe the behaviour of the approaches with respect
to the source in different states for a bigger model.

Overall, the models with 2004 and 10,016 sources and three hidden layers demon-
strated the efficacy of the proposed dynamic Tikhonov based on the DNN approach for
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state estimation in the context of the EEG inverse problem. The approach achieved lower
estimation errors, was closer to sources, and had faster convergence rates than the static
and dynamic Tikhonov approaches.
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(a) Three-layer state 10
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(b) Three-layer state 600

0 10 20 30 40 50
Time [ms]

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

O
ut

pu
t

St
at

e 
[1

20
0]

Estimate DNN
Estimate Tikhonov
Real

(c) Three-layer state 1200
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(d) Three-layer state 2000

Figure 6. Output estimation for the three-layer architecture of the Tikhonov and dynamic Tikhonov
based on the DNN models for 2004 states.
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(a) One-layer state 100
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(b) One-layer state 2500
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(c) One-layer state 5000
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(d) One-layer state 10,000

Figure 7. Output estimation for the one-layer architecture of the Tikhonov and dynamic Tikhonov
based on the DNN models for 10,016 states.
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(a) Three-layer state 100
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(b) Three-layer state 2500
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(c) Three-layer state 5000
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(d) Three-layer state 10,000

Figure 8. Output estimation for the three-layer architecture of the Tikhonov and dynamic Tikhonov
based on the DNN models for 10,016 states.

Figure 9 shows the estimation results from the forecasting, demonstrating that the
DNN approach continues to achieve the closest fit to the actual sources and exhibits the
lowest prediction error compared to the static and dynamic Tikhonov approaches. This
suggests that the DNN approach is more effective in capturing the complex non-linear
dynamics of the EEG sources.

0 10 20 30 40 50
Time [ms]

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

O
ut

pu
t 

St
at

e 
[2

00
0]

Estimate DNN
Tikhonov Dynamic
Estimate Tikhonov
Real

(a) Model 2004 states

0 10 20 30 40 50
Time [ms]

0

1

2

3

4

O
ut

pu
t 

St
at

e 
[1

00
00

]

Estimate DNN
Tikhonov Dynamic
Estimate Tikhonov
Real

(b) Model 10,016 states
Figure 9. Output estimation of the Tikhonov and dynamic Tikhonov based on the DNN models for
2004 and 10,016 states.

Table 1 shows the estimation results for the static and dynamic Tikhonov approach in
terms of the least-squared error for a model with 2004 and 10,016 states.
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Table 1. Mean-squared estimation error.

Model Regularized LS Model 2 K Regularized LS Model 10 K

Estatic 639.016 602.9669
Dynamic 127.4491 95.4469

The least-square error for the dynamic Tikhonov approach is significantly lower than
for the static Tikhonov approach for both models. This suggests that incorporating the
temporal dynamics in the state estimation problem can significantly improve the accuracy
of the estimation. In addition, Table 2 shows the estimation errors by using the proposed
dynamic Tikhonov with DNN constraints approach using several configurations of hidden
layers in terms of the least-squared error.

Table 2. Mean-squared estimation error.

Hidden Layers Regularized LS-DNN Model 2 K Regularized LS-DNN Model 10 K

0 439.4857 897.7086
1 348.5712 60.4926
2 177.608 42.6174
3 104.813 34.2116

In terms of the least-squared estimation error, the dynamic Tikhonov approach with
DNN constraints outperformed both the static and dynamic Tikhonov approaches, as well
as achieved better results with an increasing number of hidden layers.

4. Discussion and Conclusions

The proposed dynamic Tikhonov based on the DNN constraints approach was eval-
uated to solve an EEG inverse problem for neural activity estimation. By approximating
the non-linear dynamic of state evolution using DNNs for two brain models with 2004
and 10,016 sources, the method improves the dynamic tracking of EEG. Qualitative and
quantitative analyses were conducted for state forecasting for dynamic tracking, and the
proposed method showed better results than the static and dynamic Tikhonov approaches.
The findings indicate that using a dynamic approach that considers changing dynamics
over time can improve the estimation accuracy, especially when combined with DNN
constraints and multiple hidden layers. The proposed method also has the potential for
future behaviour prediction and could be valuable in solving inverse problems in various
applications with dynamic behaviour and non-linear dynamics.

Author Contributions: Conceptualization, E.G., J.M.; methodology, E.G., C.M., J.M.; software, E.G.,
C.M., J.M.; validation, E.G., C.M., J.M.; formal analysis, E.G.; investigation, C.M.; resources, E.G.,
C.M., J.M.; data curation, E.G., C.M., J.M.; writing—original draft preparation, E.G., C.M., J.M.;
writing—review and editing, E.G., C.M., J.M.; visualization, E.G., C.M., J.M.; supervision, E.G., J.M.;
project administration, E.G.; funding acquisition, E.G., C.M., J.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This work is funded by Project No. 6-22-8 entitled “Identificación y control de sistemas
multivariables interconectados a gran escala” by Universidad Tecnológica de Pereira, Pereira, Colombia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Eng. Proc. 2023, 39, 28 9 of 9

References
1. Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep CNN for image

denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [CrossRef] [PubMed]
2. Li, H.; Schwab, J.; Antholzer, S.; Haltmeier, M. Nett: Solving inverse problems with deep neural networks. Inverse Probl. 2020, 36, 065005.

[CrossRef]
3. Zhang, Z.; Brand, M. Convergent block coordinate descent for training tikhonov regularized deep neural networks. In Proceedings

of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30.
4. Chien, J.T.; Lu, T.W. Tikhonov regularization for deep neural network acoustic modeling. In Proceedings of the 2014 IEEE Spoken

Language Technology Workshop (SLT), South Lake Tahoe, NV, USA, 7–10 December 2014; pp. 147–152.
5. Afkham, B.M.; Chung, J.; Chung, M. Learning regularization parameters of inverse problems via deep neural networks. Inverse

Probl. 2021, 37, 105017. [CrossRef]
6. Nguyen, H.V.; Bui-Thanh, T. Tnet: A model-constrained tikhonov network approach for inverse problems. arXiv 2021,

arXiv:2105.12033.
7. Romano, Y.; Elad, M. The little engine that could: Regularization by denoising (red). In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.
8. Mao, X.J.; Shen, C.; Yang, Y.B. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip

connections. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14
October 2016.

9. Kolowrocki, K. 10—Large complex systems. In Reliability of Large and Complex Systems; Elsevier: Amsterdam, The Netherlands,
2014; Volume 2.

10. Sockeel, S.; Schwartz, D.; Pélégrini-Issac, M.; Benali, H. Large-scale functional networks identified from resting-state EEG using
spatial ICA. PLoS ONE 2016, 11, e0146845. [CrossRef] [PubMed]

11. Sanchez-Bornot, J.M.; Sotero, R.C.; Kelso, S.; Coyle, D. Solving large-scale meg/EEG source localization and functional connectivity
problems simultaneously using state-space models. arXiv 2022, arXiv:2208.12854.

12. Wang, Q.; Loh, J.M.; He, X.; Wang, Y. A latent state space model for estimating brain dynamics from electroencephalogram (EEG)
data. Biometrics 2022, Early View. [CrossRef]

13. Giraldo-Suarez, E.; Martinez-Vargas, J.D.; Castellanos-Dominguez, G. Reconstruction of neural activity from EEG data using
dynamic spatiotemporal constraints. Int. J. Neural Syst. 2016, 26, 1650026. [CrossRef] [PubMed]

14. Huang, Y.; Parra, L.C.; Haufe, S. The new york head—A precise standardized volume conductor model for EEG source localization
and tes targeting. NeuroImage 2016, 140, 150–162. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TIP.2017.2662206
http://www.ncbi.nlm.nih.gov/pubmed/28166495
http://dx.doi.org/10.1088/1361-6420/ab6d57
http://dx.doi.org/10.1088/1361-6420/ac245d
http://dx.doi.org/10.1371/journal.pone.0146845
http://www.ncbi.nlm.nih.gov/pubmed/26785116
http://dx.doi.org/10.1111/biom.13742
http://dx.doi.org/10.1142/S012906571650026X
http://www.ncbi.nlm.nih.gov/pubmed/27354190
http://dx.doi.org/10.1016/j.neuroimage.2015.12.019
http://www.ncbi.nlm.nih.gov/pubmed/26706450

	Introduction
	Materials and Methods
	Forward Dynamic Problem
	Dynamic Tikhonov Based on DNN

	Results
	Experimental Setup
	State Forecasting Results

	Discussion and Conclusions
	References

