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Abstract: The availability of solar irradiance time series without missing data is an ideal scenario for
researchers in the field. However, it is not achievable for a variety of reasons, such as measurement
errors, sampling gaps, or other factors. Time series imputation methods can be a solution to the lack
of data and, in this paper, we study the applicability of Bidirectional Encoder Representations from
Transformers (BERT) as an irradiance time series imputation solution. In this regard, a BERT model
was trained from scratch for the masked language modelling (MLM) task, and the quality of the
imputation was evaluated according to the number of missing values and the position within the
series. The experiments were conducted over a dataset of 165 stations, captured by meteorological
stations distributed over the Spanish regions of Galicia, Castile, and León. In the evaluation process,
an average coefficient of determination (R2 score) of 0.89% was obtained, the maximum result
being 0.95%.
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1. Introduction

Time series are sequences of data that are recorded at regular intervals of time, and
are ordered according to the time in which they are recorded [1]. In many fields where it is
important to have complete and accurate data for analysis and decision making, such as
meteorology, healthcare, and solar energy, missing data imputation is a common challenge.

The imputation method is an important time series analysis, in which missing values
in the series are filled in using available observed values [2]. In [2], Fang et al. defined nine
types of the missing value imputation methods, based on the methodology used for filling
the values. The methods included were: (1) deletion methods, (2) neighbour-based methods,
(3) constraint-based methods, (4) regression-based methods, (5) statistical-based methods,
(6) matrix factorization/based methods, (7) expectation-maximization-based methods,
(8) multi-layer perceptron-based methods, and (9) methods based on deep learning (DL).
For each of the established types, examples were given, although the study focused on
imputation methods based on DL.

In this regard, imputation of solar energy time series [3] is a topic that has been ex-
plored with traditional statistical methods [4,5] and with more modern machine learning
(ML) methods [6,7]. Demirhan et al. [5] evaluated 36 imputation methods for solar irradi-
ance series with a dataset collected in Australia—the considered methods of imputation
were variants of the methods listed hereafter, namely: (1) interpolation (such as linear,
spline, or Stineman), (2) Kalman filters, (3) persistence, (4) weighted moving average, and
(5) random sample. The authors defined sixteen experimental scenarios, and concluded that
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the most accurate methods for minutely and hourly series were the linear and the Stineman
interpolations (based on a function that runs through a set of points in the xy-plane and
returns the estimates of the calculated slopes); for daily or weekly series, the weighted
moving average delivered the best result.

De-Paz-Centeno et al. [7] proposed a neural network to impute values for series with
missing values in ranges of 30% to 70% of the total number of values, and recommended
its use for scenarios with 50% of lost vales. The proposed neural network was a convolu-
tional neural network following the encoder–decoder structure, and the experiments were
carried out on a private and a public dataset, each containing two years of samples. The
application of the proposed architecture resulted in coefficients of determination (R2 score)
ranging range between 0.81 and 0.98, considerably higher when compared to the other
models evaluated.

Due to the sequential nature of the time series, it is possible to use models developed
for natural language processing (NLP), such as transformers, in their processing. Transform-
ers are based on attention mechanisms (they relate different positions of the same sequence
to compute a representation of the sequence; also known as self-attention) and proved
successful at solving sequential tasks, while easily handling long-range dependencies [8].
Transformer-based models have been applied and achieved good results in the imputation
of time series [9,10].

Bidirectional Encoder Representations from Transformers (BERT) [11] is a DL model
based on transformers that uses bidirectional self-attention by jointly conditioning the left
and right context, being is one of the most popular DL-based linguistic models [12]. BERT
can be pre-trained using two unsupervised tasks, the masked language model (MLM) and
next sentence prediction (NSP). The MLM randomly masks a part of the tokens in the input
sequence, and the goal is to predict the masked words based solely on its context. For
the NSP task, BERT model is pre-trained on representations of pairs of texts to predict a
sequence from the previous sequence. BERT has also been pre-trained for other areas of
knowledge, such as vision [13,14] bioinformatics and computational biology [15–17], or
geospatial representation learning based on a point of interest [18].

In this study, the BERT’s performance in irradiance time series imputation will be
assessed by training the model from scratch for the MLM task. To the authors’ knowledge,
this is the first time the model has been trained on irradiance data. We hypothesized that
training directly on a specialized corpus and using a specialized vocabulary could lead to
more adapted embeddings and, thus, help performance.

The main contributions of this paper are as follows.

(1) To the best of the authors’ knowledge, the first BERT model trained from scratch with
solar irradiance data is introduced;

(2) The implementation is evaluated for time series imputation in two scenarios, namely
(1) the imputation of a single missing value at a specific position and (2) imputed a
missing value where all values were missing after this position in the sequence.

The remaining part of the document is organised as follows. Section 2 describes the
model, the data and the methodology used. Section 3 the experiments, and presents the
analysis performed. The works ends with Section 4.

2. Methodology
2.1. Studied Model (BERT)

In NLP tasks, the first step in the processing pipeline is the tokenization (the process
of dividing the text into small units, called tokens; tokens can be the words of a sentence or
a sequence of characters).

BERT is a complex and advanced linguistic model, where the sentence is parsed as
a token chain—each token in the chain is compared against all other tokens to gather
information and learn the dynamics of the context. This information is stored in the
form of embeddings (a numerical representation of the information). Figure 1 shows the
representation of the BERT input for a sequence of irradiance values.
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Figure 1. Representation of the BERT input for sequences of irradiances value—BERT’s input
embedding are the sum of token embedding, segmentation embedding and position embedding
(sum of the column). Notes: (1) Token embedding is represented in yellow and represent the value
in another dimension space. (2) Segmentation embedding indicate which sentence it belongs to A
or B, while (3) the position embedding represents the position in the sequence. Abbreviations: CLS
is used to identify the beginning of the sequence, EA is used to code the segment embedding, and
E1, E2 . . . En+1 represent positions of the embedding.

In the field of NLP, the MLM task (mentioned in Section 1) enforces bi-directional
learning from text by masking (or covering) a word in a sentence. In the process of
tokenization, BERT uses special tokens, such as “[MASK]”, to cover the word to be predicted.
This way, BERT is forced to use neighboring words of the masked word to predict it. In the
process, the model will generate the most likely substitution for any input containing one
or more “[MASK]” tokens. For example, if BERT’s input would be the following sequence
of irradiance values, (5, 56, 76, 89, 112, [MASK], 145, 172, 189), a probable output would be
(45, 56, 76, 89, 112, 123, 145, 172, 189). The model assigned the masked token a value based
on the learning. It is important to note that BERT uses other special tokens, such as “[CLS]”,
to identify the beginning of the sequence; “[UNK]”, to signal an unknown word; “[PAD]”,
when sentences are not of the same length to fill in missing spaces; or “[SEP]”, a sentence
separator token used for input/output in the NSP task described in Section 1.

2.2. Data Description

In this study, the experiments were carried out on two solar irradiance datasets.
The first one is composed of records from 112 meteorological stations in Galicia, stored
in a tabular .csv file format, containing two years of information (from February 2017 to
February 2019), with a time resolution of 10 min. The variables observed at the stations were
temperature, atmospheric pressure, precipitation, wind speed, wind direction, and solar
irradiance. The second dataset, CyL-GHI [19], contains information from the 53 stations
located in Castile and León, and continuously covers 21 years (the period from January
2001 to December 2021), with a temporal resolution of 30 min. The spatial distribution of
the stations is presented in Figure 2.

The variables observed at the stations were temperature, relative humidity, precipi-
tation, wind speed, wind direction and solar irradiance. In addition, there is an identifier
for each of the stations, as well as their geographical coordinates and height. However,
only the solar irradiance time series of both datasets were used for the study. The data is
grouped by stations and, using one time series for each station, implies that 165 GHI time
series were used in this study.
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2.3. Methodology

The BERT model was trained from scratch for the MLM task. Experiments were
conducted to evaluate two scenarios: (1) Scenario 1, where a single missing value was
imputed at a specific position in the sequence; and (2) Scenario 2, imputing a missing value
where all values were missing after a position in the sequence.

In our study, the sentence (or sequence) will be the GHI time series corresponding to
a day, each of the time step values shall represent one token for the model. The masked
value to be completed can be found in any position into the time series of the day. In this
regard, the data pre-processing step should ensure that all sequences to be used in training
the model are complete, and ensure that test data are not part of the input.

The first operation applied was data preparation. In this regard, the datasets featured
different temporal resolutions for the irradiance values—data from Galicia had a temporal
resolution of 10 min, while data from Castile and León featured a temporal resolution of
30 min. To unify the temporal resolutions for all the data, the frequency of data from Galicia
was shifted to 30 min.

Next, the last year of each dataset was separated for the test set. Night hours were
eliminated because during night-time, solar irradiance is zero. Sequences of values were
created with daytime data only, ensuring also that only days with no missing values
were used.

To prepare the input data for the BERT model, it was necessary to reformat the data
to plain text and save the time series of each station in a separate file, where each row
contains the irradiance values of one day. WordPiece embeddings [20] were used in this
study—WordPiece splits each irradiance value for a time step into a token. In our case, a
vocabulary of 1600 tokens was selected, to include all values present in the training data
(the irradiance can take values from 0 to 1600). The MLM task involves training the model
by randomly placing the special token “[MASK]” at different positions in the chain, so
that the model learns how to predict it. The special classification token “[CLS]” is always
the first token in each sequence, and the “[UNK]” was also used to indicate that there are
unknown values in the sequence (their capabilities are indicated in Section 2.1).

The following search space was considered: (1) the number of training epochs
(“num_train_epochs”), (2) the training batch size (“per_device_train_batch_size”), (3) the
number of gradients to accumulate (“gradient_accumulation_steps”) before updating the
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weights (between the values (2, 6, 8, 10, 12 , and (4) the batch size (with 32, 64, and 128 sam-
ples). The hyperparameter configuration that achieved the best results featured ten training
epochs, a batch training size of ten, a validation batch size of training of sixty-four, eight
accumulable gradients, twelve attention heads, and twelve hidden layers. The model saved
checkpoints every 500 steps.

The selected performance metric for evaluation is the coefficient of determination,
or R2 score, a statistical measure that indicates how well a model fits the observed data.
The R2 score is calculated using the actual value (yi) and the predicted value (ŷi) with

Equation (1), where
−
y i =

1
n

n
∑

i=1
yi.

R2 score = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1

(
yi −

−
yi

)2 (1)

3. Results and Discussion

The analysis of the results will be carried out according to the two established scenarios
outlined in Section 2.3. The BERT model was trained once and evaluated for the two
considered scenarios.

3.1. Scenario 1: Imputation of a Single Missing Value at a Specific Position

In Scenario 1, the impact of the imputation of a missing value was assessed according
to its position in the sequence. The values for sunrise and sunset were left out, due to the
discontinuous nature of solar radiation, where forecasts in the immediate vicinity of sunrise
and sunset are problematic.

The experiments were carried out by moving the mask from the position correspond-
ing to 10 a.m. to the position corresponding to 5 p.m., with all positions within that interval
evaluated. Masking was performed in a separate experiment for each field position. The R2

score in the set varied within the range of 0.83 to 0.95, as shown in Figure 3, with a mean of
0.89 and a variance of 0.13.
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the sequence.

In Figure 3 it can be found that seen that the best predictions are corresponding to the
mask at the start and end values of the sequence. If the analysis is transposed to the solar
data, it is observed that the morning and afternoon values feature smaller differences when
compared to the values of the central hours of the day. It is expected that these variations
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are more difficult to model, considering that the differences are also highlighted depending
on the month of the year.

3.2. Scenario 2: Imputation of a Missing Value after Several Unknown Values at a
Random Position

In Scenario 2, all values were missing from a specific position in the sequence. We
assessed the quality of the model to impute one value without the rest of the sequence. As
in Scenario 1, the experiments were made by moving the mask position corresponding to
10 a.m. to 5 p.m. In the sequence, the mask number is the position where the “[MASK]”
token was set; from that position onwards, the values are replaced by the “[UNK]” token.
As expected, the R2 score within the sequence increases as the number of unknown values
decreases (as shown in Figure 4). The R2 score varied within the range of 0.08 to 0.93, with
a mean of 0.59 and a variance of 0.25.
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4. Conclusions and Future Work

In this study, the application of BERT as an imputation technique for missing values
in solar radiation time series data was analyzed. The BERT model was trained from scratch
with historical data of two Spanish regions, and was evaluated for two scenarios, a first
scenario where a single missing value was imputed at a specific position in the sequence,
and a second scenario where all values were missing from a specific position in the sequence.
The metric evaluated was the R2 score, and the average performance was 0.89%, the best
result being 0.95% for imputation on the final values of the sequence.

The results achieved show how DL models can be used to impute missing data in time
series. The work can be considered as a first step in the introduction of this model in the
field of renewable energies, and raises new questions on how the addition of spatial (such
as latitude and longitude) and temporal data (such as day of the year and year) affects the
quality of the imputation.

In future studies, the BERT model could be evaluated from a spatio-temporal perspec-
tive, to analyze whether the model can model the spatial location of the weather station and
is able to improve the imputation operation with the introduction of these new features.
The model could also retrained on the next sentence prediction (NSP) task, to predict the
subsequent day of irradiance values from the previous day. In addition, the exploration
of the automation of the variables pre-processing to the format expected by BERT, or the
conversion of the output back to the time series format, is recommended.
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