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Abstract: Landslides are nonstationary and nonlinear phenomena, which are often recorded as high-
dimensional vector time series manifesting spatiotemporal dependence. Contemporary econometric
methods use error-correction cointegration (ECC) and vector autoregression (VAR) to handle the
nonstationarity but ignore the nonlinear trend. Here, we improve the ECC-VAR methodology by
inserting a nonlinear trend c(t) into the model and nonparametrically estimating it by penalised
maximum likelihood, and name this method ECC-VAR-c(t). Assisted by the empirical dynamic
quantiles (EDQ) dimension reduction technique, it is sufficient to apply ECC-VAR-c(t) to just a
small number of representative EDQ series to surmise the whole dataset. The application of this
ECC-VAR-c(t) is well fitted to the real-world slope dataset (R2 = 0.99) that consists of 1803 time
series, each having 5090 time states. In addition to the forecast values, we also provide three risk
assessments to predict locations, time and risk of a future failure with quantified uncertainty for
building an early-warning system (e.g., predicted time of failure (ToF), where the minimum error is
2.7 h before the actual ToF).

Keywords: vector time series; nonlinear and nonstationary; error-correction cointegration; dimension
reduction

1. Introduction

Recent advancements in modern technologies such as radars, satellites, sensors make it
computationally feasible and accurate in monitoring the real-world complex systems [1–3].
Based on these advanced detection technologies, a move from a conventional detection–
diagnosis–mitigation to a more proactive prediction–prognosis–prevention paradigm is becom-
ing increasingly evident. A typical example is the prediction of geological hazards such as
landslides. It is crucial to make reliable and timely predictions of an impending hazard for
risk mitigation to protect lives, livelihoods and the environment [4,5]. However, observa-
tions of landslides are often recorded as high-dimensional, spatial–temporal-dependent
vector time series with nonlinear and nonstationary phenomena. Time series forecasting of
such complex systems are considered one of the emerging challenges of modern science [6].

The current existing methods for modelling and forecasting time series, for example [7–11],
have some limitations in dealing with the diverse combinations of the nonlinear and nonsta-
tionary dynamic behaviours among the system and the computational infeasibility caused
by high dimensions in the real-world dataset. The objective of this paper is to develop a
statistical model used for high-dimensional, spatial–temporal-dependent, nonlinear and
nonstationary time series–here, we focus on landslides—and provide reliable and timely
prediction for early warnings.

We develop a data-driven model by combining several advanced techniques. First,
we apply a dimension reduction technique called empirical dynamic quantiles (EDQ),
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proposed by Peña et al. [12] to present the high-dimension vector time series by a small
number of EDQ series; then, we use error-correction and cointegration (ECC) form of the
vector autoregession (VAR) model to deal with the nonstationarity in the time series and
combine this with an empirical function c(t) used to capture the nonlinearity. To assess the
performance of the proposed ECC-VAR-c(t)-EDQ model, we apply it to real-world ground
motion data, which have 1803 time series, with each having 5090 time states in total. Once
we obtain the optimal model, we can calculate the forecast values and use them for further
analysis to predict future failure.

The performance of a forecasting framework is not just about how accurately the
forecast values can figure out the failure (i.e., true positive), it is also about how well the
forecasting framework can confidently forecast a stable region (i.e., true negative). The
studied slope data in this paper have both failure and stable regions, which is an ideal case
for assessing our model. In addition to the forecast values that can be obtained from our pro-
posed model, we also provide three risk assessments to predict the locations of failure, time
of failure and risk of failure with quantified uncertainty, based on certain what-if-scenarios
at each future time and location. From the forecast values and these three assessments,
our developed forecasting framework can successfully tackle the high-dimension, nonsta-
tionary and nonlinearity among the spatial–temporal-dependent dynamic system, forecast
the failure and stable in the slope data domain and provide a reliable prediction for early
warnings, as shown later in the paper.

This paper is organized as follows. The slope data analysed in this paper are intro-
duced in Section 2. The details of the method are described in Section 3 before we apply
this method to the slope data in Section 4. The forecast results and three risk assessment
discussions used for building an early warning system are presented in Section 5, and the
conclusion about this forecasting framework is presented in Section 6.

2. Data Description

The studied slope data focus on a rock slope of an open-pit mine dominated by
intact igneous rock that is heavily structured or faulted by many naturally occurring
discontinuities [13]. Since the mine operation, location and year of the rock slides are
confidential, we call this dataset Slope X data. The monitoring domain stretched to around
200 m in length and 40 m in height. Movements of the rock face were monitored over a
3-week period: 10:07 May 31 to 23:55 June 21. Displacement at each of the 1803 monitoring
locations or pixels on the surface of the rock slope was updated every six minutes, with
T = 5090 time states in total. This led to a vector time series data with dimensions 1803
and length 5090. A landslide occurred on the western side of the slope on June 15, with an
arcuate back scar and a strike length of around 120 m. The time of failure (ToF) occurred at
around 13:10 June 15 (t = 3568), close to when the global peak velocity of 33.61 mm/h was
reached [13,14]. The observed displacement and locations are shown in Figure 1.

Figure 1. (a) Displacement histogram at time of failure (ToF), 13:10 June 15. (b) Displacement at all
these 1803 monitoring locations. (c) The observed 1803 time series each has length 5090 in grey. The
11 EDQ series highlight in black in (c) and their corresponding locations showed as black dots in (b).
The red dashed line is the ToF.
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3. Method

Limited by computational infeasible for big spatial–temporal-dependent data, most of
the existing models for geo-hazards [7,8,10] can only deal with univariate or low-dimension
vector time series. To improve this limitation, our proposed data-driven model forecasts
future behaviors for all time series in the study domain. This model accounts for the
influence of past and present at location i and all nearby locations, as well as the changes in
these interdependences across space and time. The forecasts from the existing geo-hazards
forecasting model often lack quantification of the associated uncertainties in terms of
probabilistic assessments. The method described in this paper provides new insights in the
modeling of high-dimensional, spatial–temporal-dependent time series with nonlinear and
nonstationary phenomena and provides a reliable prediction of where and when failure
will occur, as well as the quantified uncertainty of a future failure. An overview of our
forecasting framework is presented in Figure 2.

Figure 2. Overview of the forecasting framework. There are two parts of this forecasting framework.
The first part is modelling and forecasting. The second part is building an early-warning system to
predict future failure with three risk assessments (R1–R3).

In step 1, we first apply a dimension reduction technique to reduce the dimension of the
large-scale dataset from N = 1803 to a small number k, which can make sure computation
ia feasible for the further steps in our method, with a negligible loss of spatial and temporal
dynamical information. We use the training sample to identify these k locations from the
entire domain (i.e., i = 1, · · · , 1803; t = 1, · · · , T with T = 2854 for Slope X data for purpose
of illustration). To achieve this, we apply the idea of empirical dynamic quantiles (EDQ),
introduced by [12] and first used in a forecasting model for high-dimensional landslides
data in [14]. The key idea behind this technique is that the dimension reduction to k
EDQ series at k quantile levels 0 ≤ q1 < q2 < · · · < qk ≤ 1 is achieved by selecting a
small subset series from the original observed time series set, which is able to retain the
dynamic dependence in the original dataset. This small set time series selected at k quantile
levels optimally represents the whole time series set. Note that finding the k EDQ series
from the original N = 1803 time series set is the same as finding the k locations from the
1803 monitoring locations. Statistical computations used to determine the k representative
EDQ series essentially involve minimizing the sum of absolute differences between each
observed time series and the prospective EDQ series at the given quantile level. This
optimization procedure is computationally feasible and statistically consistent; more details
ar eprovided in [12]. These k representative EDQ series enable us to perform various
statistical inferences and forecasting in a manner that captures and retains the essential
spatial–temporal dynamics that drive the slope’s surface motion as damage spreads in the
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landslides. Similarly, the quantile level for each location and time series in the training data
can also be determined by this technique.

In step 2, we develop a model using the training sample from the representative k
EDQ series to capture the nonstationary, nonlinear trends and spatial–temporal dynamics
in the ground motion system. It is important to have such a model to provide reliable
and timely forecasts for this complex system. Unlike most existing time-series forecasting
methods [7,8,11], our model considers both the nonstationary and nonlinear observed
time series. To develop such a model, we use the concepts of vector autoregression (VAR)
time series and error-correction cointegration (ECC) modelling [15,16] to deal with the
nonstationarity and combine these with an empirical function c(t) in terms of time t to
capture the nonlinear trends in the ground motion system. We call this method the ECC-
VAR-c(t)-EDQ model. Let {zt, t = 1, · · · , T} be the k dimension vector time series of
displacement observed from k EDQ locations, and ∆zt = zt − zt−1 be the velocity. The key
equation for this ECC-VAR-c(t)-EDQ model is of the following form

∆zt = αyt−1 +
p−1

∑
i=1

Φi∆zt−i + c(t) + εt, (1)

where yt−1 = β>zt−1, with β being the k× r co-integration matrix of rank r; α is the k× r
stationary adjustment matrix, which is also of rank r; Φis are the k× k space–time associ-
ation matrices; c(t) is the predefined function of time t used to capture the nonlinearity;
{εt} is a sequence of independent and identically distributed k random vectors with mean
zero and covariance matrix Σ. Determining model (1) and estimating the parameters are
the tasks undertaken in step 2 of Figure 2.

The first key property of Equation (1) contains a valid analysis of the nonstationary,
spatial–temporal dynamics, where zt is usually nonstationary in real-world dataset [8]
but yt−1 = β>zt−1 must be stationary if ∆zt is stationary. Here, we apply the idea of
cointegration [17–19]—a linear combination of these k unit-root nonstationary time series
zt that become r stationary series yt. The linear combination matrix β is called a cointe-
grating matrix with rank r. Cointegration implies a long-term stable relationship between
variables in forecasting [15]. Another important feature of Equation (1) is its capacity for
nonlinearity in the function c(t). A broad exploration and the literature show that empirical
approaches are quite often used to overcome the difficulties encountered when using the
nonlinear theoretical formulations [20,21]. Here, we use an empirical method to deter-
mine c(t)-employ the flexible mathematical functions and represent the nonlinear trend by
adapting parameters.

Specifically, to fit and estimate this model (1), we need to determine the cointegration
rank r and the cointegration matrix β. Consider the ECC-VAR-c(t)-EDQ model (1) and
replace yt−1 = β>zt−1; then, we have

∆zt = Πzt−1 +
p−1

∑
i=1

Φi∆zt−i + c(t) + εt, (2)

where Π = αβ>. The matrix Π plays an important role in the cointegration study: if
rank(Π) = 0, there is no cointegrating vector. In other words, the test for cointegration
focuses on testing the rank of matrix Π = r̂. Johansen’s method is the best-known cointe-
gration test for VAR models; see more details in [22,23]. Impact matrix Π is the coefficient
of the lagged levels in a nonlinear least squares regression of ∆zt on lagged differences
and lagged levels ∑

p−1
i=1 Φi∆zt−i and function c(t) [15,17]. Three main steps are used to

test the rank of the impact matrix Π: since Π is related to the covariance matrix between
∆zt and zt−1, the mean will not influence the estimation of Π. We can first simplify the
Equation (2) by concentrating on the effect of the lagged differences ∑

p−1
i=1 Φi∆zt−i and

function c(t). Let us achieve this by first regressing ∆zt on function c(t) and the lagged
differences ∑

p−1
i=1 Φi∆zt−i, providing the residuals ût and then regressing zt−1 on function
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c(t) and the lagged differences ∑
p−1
i=1 Φi∆zt−i, leading to the residuals v̂t as Equation (3).

After performing these two regressions, we obtain the simplified model as Equation (4).

∆zt = c(t) +
p−1

∑
i=1

Φivi∆zt−1 + ut, zt−1 = c(t) +
p−1

∑
i=1

Φivi
∗∆zt−1 + vt (3)

where c(t) is our pre-defined function to capture the nonlinear trend. These two regressions
in Equation (3) can be estimated by the least-squares (LS) method and ût, v̂t are the residuals
obtained from these two regressions. Then, we have the simplified model as follows,

ût = Πv̂t + et (4)

The least-squares estimate of matrix Π is identical for Equation (2) and the simplified
model (4). Hence, testing the rank of the covariance matrix between the zt and ∆zt−1 is
equivalent to testing the rank of the covariance matrix between ût and v̂t. We can focus on
testing the rank of the matrix Π in Equation (4). We use the likelihood ratio test (LRT) to
test the rank of Π and find the estimated cointegrating vector β. Let

H(0) ⊂ H(1) ⊂ · · · ⊂ H(r) ⊂ H(k)

be the nested models such that, under H(r), there are r cointegrating vectors in zt. In
particular, under H(0), we have Π = 0. Under H(r) : rank(Π) = r; that is, there are r
linearly independent vectors among these k vectors and the maximum likelihood estimate
(MLE) of Σr is

Σ̂r =

[
Σ̂r×r 0r×(k−r)

0(k−r)×r Σ̂(k−r)×(k−r)

]
(5)

The maximized likelihood function is, therefore, approximate to

lr ∝ |Σ̂r|−
T
2 =

(
|Σ̂r×r||Σ̂(k−r)×(k−r)|

)− T
2

(6)

Under H(k) : rank(Π) = k, that is, the matrix Π is full rank, there is no constraint on the
covariance matrix. Similarly, we can obtain the maximized likelihood function under H(k)
and the likelihood ratio is, therefore,

L =

(
|Σ̂k|
|Σ̂r|

) T
2

=

(
|I(k−r)×(k−r) − Σ̂−1

(k−r)×(k−r)Σ̂(k−r)×rΣ̂−1
r×rΣ̂r×(k−r)|

) T
2

(7)

We define

Σ̂uu =
1
T

T

∑
t=1

ûtû>t , Σ̂vv =
1
T

T

∑
t=1

v̂tv̂>t , Σ̂uv =
1
T

T

∑
t=1

ûtv̂>t , Σ̂vu =
1
T

T

∑
t=1

v̂tû>t

Then, the sample matrix becomes S = Σ̂
−1
vv Σ̂vuΣ̂

−1
uu Σ̂uv, and λ1 ≥ λ2 ≥ · · · λk ≥ 0 be the

ordered eigenvalues of the sample matrix S and gi be the eigenvector associated with eigen-
value λi. Here, λr+1 ≥ λr+2 ≥ · · · λk are the eigenvalues of Σ̂−1

(k−r)×(k−r)Σ̂(k−r)×rΣ̂−1
r×rΣ̂r×(k−r).

We can obtain the likelihood ratio test statistic as follows

LR = −2 log L = −T
k

∑
i=r+1

ln(1− λi). (8)

Reject the null hypothesis if LR is larger than the critical value and the estimated cointegrat-
ing vector can be obtained from the r corresponding eigenvectors β̂ = [g1, . . . , gr] [17,18].

Another aspect of fitting and estimating the ECC-VAR-c(t)-EDQ model (1) is the
determination of c(t). Johansen also pointed out that the function c(t) in Equation (2) has
important implications in a cointegrated system [24]. Tavenas and Leroueil pointed out
that the rationale for most time-of-failure predictions is that the slope displacement can be
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represented by a creep curve before rupture [25], which can be divided into three stages.
According to the classic interpretation, the first stage is primary creep, with the strain rate
decreasing logarithmically, followed by secondary (or steady-state) creep with a constant
strain rate, and tertiary creep with an increasing creep rate, which leads to rupturing. Our
aim was to capture the nonlinear trend by using a function c(t) that is equivalent to finding
a method to represent the creep curves. Empirical methods have been used extensively
to represent creep curves, which requires a user to define the functions to represent the
curve models from the data trend [26,27]. Research and experiments have found that it is
sufficient to obtain an accurate representation of the creep curve by adding the primary part
and tertiary part together [21,28]. At present, these empirical approaches use the simple
power function combined with exponential function to represent the creep curves [21,28,29].
Here, we apply the empirical method to determine the form of function c(t). Let c(t) have
the form of c(t) = f1(t) + f2(t), where f1(t) is used to capture the trend in precursory
failure regime and f2(t) is used to capture the nonlinear trend in tertiary creep. Then, the
deterministic function c(t) has the following form:

c(t) =
(

ta1 + exp [a2(t− tp)]
)a

(9)

where a1, a2, a are the pre-estimated parameters for the form of c(t) obtained by using
penalized maximum likelihood; tp is the time state, which can be determined by prior work.
When t < tp, f2(t) = exp [a2(t− tp)] < 1, then c(t) will mainly be influenced by f1(t); on
the other hand, when t > tp, f2(t) will have an exponential growth, and c(t) will mainly
be influenced by f2(t), which can be used to represent the creep curve. Figure 3 provides
several examples of c(t) with different values of a, a1, a2.

Figure 3. Curve of function c(t) with different values of a1, a2, a. The black lines are a = 1, a2 = 1
with three different values of a1. The blue lines are a = 0.5, a2 = 1 with three different values of a1.

We use the cointegration test with our pre-estimated function c(t) finding the es-
timated cointegrating matrix β̂. After that we can fit and estimate the ECC(r̂)-VAR(p)-

c(t)-EDQ model (1) with yt−1 = β̂
>

zt−1. We use least square (LS) method estimate the
unknown parameters {α, Φi, c},c is the parameters from c(t) function. Once we have the
fitted model, we can calculate the forecast values of the k EDQ displacement series at times
t = T + 1 and beyond. The forecast values ∆zt and zt can be denoted as ∆̂zt and ẑt; at
future time steps, t = T + h, h = 1, 2, · · · , are

∆̂zT+h = α̂ŷT+h−1 +
p−1

∑
i=1

Φ̂i ̂∆zT+h−i + ̂c(T + h), ẑT+h = ∆̂zT+h + ẑT+h−1 (10)
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where ∆̂zt = ∆zt and ẑt = zt if t < T (i.e., if t is inside the training data), and {α̂, Φ̂i, c(T̂ + h)}
are the estimated parameters in model (1). We then employ these forecast results to
interpolate and approximate the displacement in the other N − k locations at future time.
For example, to forecast the displacement zi,T+h at location i with EDQ quantile level
qi ∈ [0, 1] at time T + h, we first figure out the two adjacent quantile levels qj and qj+1 from
the k EDQ series we found in part 1 with their forecast displacement ẑj,T+h and ̂zj+1,T+h,
such that qj < qi ≤ qj+1. Then, zi,T+h can be calculated by

ẑi,T+h =
qj+1 − qi

qj+1 − qj
ẑj,T+h +

qi − qj

qj+1 − qj
̂zj+1,T+h (11)

In step 3, once we obtain the forecast displacement across the entire domain, we can
provide predictions for where and when a future failure will occur by using three risk
assessments in parallel. The first uses the clustering method for the forecast values at all
locations at a specific future time states to determine the likely locations of failure. The
second one uses the adaptive Fukuzono method on the EDQ time series to estimate the
earliest time of failure (ToF), which is more objective than traditional Fukuzono regression.
The last one delivers a spatial map of the probability of risk of failure at each future
time steps, which is calculated by the prescribed what-if-scenario (e.g., a scenario when
the forecast velocity at a location exceeds a predefined threshold value). Details will be
provided in Section 5 by analyzing the Slope X data described in Section 2.

4. Apply to Slope X Data

To assess the performance of our ECC(r)-VAR(p)-c(t)-EDQ model, we applied it to
real-world slope data. It is common to split the dataset into two parts when developing
statistical and machine learning models [30,31]. Many researchers proposed a ratio of 80/20
for producing a training/testing dataset for landslide susceptibility problems [32,33]. The
other principle for determining the training data is that they must not contain the actual
failure but should contain some information on precursory failure. Therefore, we used the
training set with length 80% of Slope X data, starting from t = 1 to t = 2854, and used the
data starting from t = 2855 to t = 3568(the actual time of failure) as our test sample (20%
of the observed data). There was no issue regarding which part was used as the training
sample; to prove this, we also provide the results obtained when using moving training
samples in Section 5. As Section 3 describes, first, we selected the k = 11 EDQ series to
represent the entire N = 1803 time series based on the training sample. These 11 EDQ
series at quantile levels- {0.0, 0.1, 0.2, · · · , 0.8, 0.9, 1.0} with the corresponding monitoring
pixel ID are {33, 1451, 1130, 863, 1257, 930, 1059, 860, 825, 738, 534}. The displacement and
locations for these 11 EDQ series are highlighted in black in Figure 1. We used the training
sample to fit and estimate the ECC(r)-VAR(p)-c(t)-EDQ model.

In Figure 3, the black solid is shown capture the shape of creep curve well; therefore,
we chose the empirical function c(t) = t3/2 + exp(t− tp) to represent the nonlinear trend.
Based on the current knowledge from the data, when t = 2200, there is some acceleration
trend; therefore, here, we took the current estimated time of failure as prior tp = 2200. Next,
we applied the cointegration test described in Section 3 for the 11 EDQ series {zt}. The test
results conclude that r = 8 for the Slope X data. A goodness of fit test using coefficient of
determination shows that an auto-regression order of p = 2 is sufficient for modelling the
Slope X data. Eventually, we determined the optimal values for all unknown parameters in
ECC(8)-VAR(2)-c(t)-EDQ model (1). The forecast displacements for the 11 selected EDQ
locations at the test sample times 2855 ≤ t ≤ 3568 are displayed in Figure 4.

These forecasts overall conform to the increasing trends of the observed displacement
data (the grey curves in the plot). Such an observation is expected and was invariant to the
selection of training data according to the established properties underlying the current
vector time series forecasting methods. Clearly, the forecasts for each EDQ location are
mostly greater than the actual observations, except when t is very close to the actual failure
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time (t = 3568). Apart from the 11 selected EDQ series, forecast displacement for the
remaining 1792 time series over time 2855 ≤ t ≤ 3568 was computed using Equation (11).
The results for the displacement forecasts are displayed in the right plot of Figure 4. These
displacement forecasts can also be depicted as a heat map for each future time t. Such a
heat map, at t = 2855 and t = 3568, is displayed in Figure 5, along with its histogram plot.

Figure 4. (Left) For the 11 selected EDQ series; (Right) for all 1803 time series. Forecast displacement
at time t = 2855 to t = 3568 based on the training sample starting from t = 1 to t = 2854. The red
dashed line is the actual time of failure at t = 3568.

Figure 5. Forecast displacement at all these 1803 monitoring pixels. (Left) forecast displacement at
t = 2855; (Right) forecast displacement at t = 3568, ToF.

5. Results and Discussion

Here, we built an early-warning system to predict the locations, time and risk of a fu-
ture failure using three risk assessments. These risk assessments were based on the forecast
values and provide more objective assessments. The results of these risk assessments apply
to the forecast values for slope X data, and are shown in Figures 6–8.

The first risk assessment (R1) focuses on identifying the likely locations of the slope
failure. This can be achieved by using the displacement forecasts to cluster all monitoring
locations into stable and failure regions for each future time t. We used the simple K-means
clustering to perform such a clustering for Slope X data [34,35] (e.g., K = 2 clusters, for
stable and failure). From Figure 6, we can clearly identify the predicted failure pattern
from t = 2855, the first time state at our forecast horizon (i.e., 2 days, 23:18 to ToF), and
this failure geometry remains unchanged as the forecast time state moves forward until
t = 3568 (ToF).

Figure 6. (R1) Predicted locations of failure using clustering at time t = 2855, 3517, 3568.
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Figure 7. (R2) Predicted time of failure using adaptive Fukuzono analysis. The left plot is for fixed
training data with rolling Fukuzono regression window. The right plot is for the rolling training
sample with fixed Fukuzono regression window.

The second risk assessment (R2) focuses on predicting the time of failure (ToF) by
using an adaptive Fukuzono method for the forecasts of each selected EDQ series. The
classical Fukuzono method draws a regression line based on selected observed inverse
velocities and extends the regression line forward until it intersects with the time axis, and
the intersection is the Fukuzono estimated time of failure [36]. This method depends on
(1) the start location and (2) the number of inverse velocities used for regression. Instead of
determining these two things by personal choice or some prior work, here, we improved
the Fukuzono method by using a more objective method. As the left panel in Figure 7
shows, we applied a moving Fukuzono regression window to the forecast timeline with
different sizes: L = 20, 30, 40, 50. Each curve represents the predicted time of failure t∗

using one Fukuzono regression window with size L at different time states. For example,
the black lines is the t∗ obtained from the moving Fukuzono regression window with
length L towards the forecast horizon for the Max quantile EDQ series. The intersection of
these four curves will be treated as the convergence point of the predicted time of failure.
Figure 7 shows that our predicted time of failure is t = 3487, which is 8 h before the actual
time of failure. We also assessed the performance of our model (1) using a moving training
window. As the right plot in Figure 7 shows, there are 14 different training samples in total;
we used the training sample starting at time interval [1, 2854] and then moved forward by
50 with a fixed length 2854. Based on each training window, we used the first L forecasts to
find the Fukuzono regression and obtain the predicted time of failure. Figure 7 shows that
when the training window is closer to the actual ToF, our predicted ToF will be closer to the
actual time of failure, with the minimum error of 2.7 h before the actual ToF.

Figure 8. (R3) predicted risk of failure for what-if-scenario at time t = 2855, 3517, 3568.

The third risk assessment (R3) focuses on the risk of failure in terms of quantified
uncertainty under a given what-if-scenario. In general, the risk of failure is a probability
function of certain measured slope feature, aiming to reach a threshold hazard level at
a future time state [37]. Our task is to generate a spatial map of the risk of failure for
every monitoring location and every future time state until the actual failure occurs. For
example, slope motion velocity data exceeding 10 mm/h = 1 mm/6 min are understood
as dangerous, prompting an immediate red-alert warning [38]. Then, we can calculate the
risk of failure for Slope X data Pr(∆̂zi,t ≥ 1) for location i from time t = 2855 to 3568. As
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Figure 8 shows, we can identify the time for each location when the forecast risk of failure
exceeds 60% probability. For example, Pr(∆z11,t ≥ 1) > 0.6 for the level-1.0 EDQ location
when t ≥ 3517, 5.1 h before the actual time of failure t = 3568. It should be noted that these
risk-of-failure results are obtained using the observations from t = 1 to t = 2854, about
71.4 h before the actual landslide. Therefore, we can conclude that our ECC-VAR-c(t)-EDQ
method is able to accurately predict an impending landslide, by providing a 60% or more
risk of rock failure for each location, more than 71 h in advance. The spatial map of risks of
failure at time t = 2855, 3517, 3568 and all monitoring locations are displayed in Figure 8.
All the findings from Figures 6–8 show that this assessment is capable of providing timely
and accurate ToF estimates.

6. Conclusions

We developed a statistical model and an early-warning system to forecast landslides.
This ECC-VAR-c(t)-EDQ model is computationally feasible and comprehensive to deal
with high-dimensional, spatial–temporal-dependent time series with nonlinear and nonsta-
tionary phenomena. The results of the application of this ECC-VAR-c(t)-EDQ model fitted
the real-world Slope X data (R2 = 0.99) and provided reliable early-warning predictions
for decision-making and risk mitigation. Finally, there is still some further work that could
improve our proposed ECC-VAR-c(t)-EDQ model. For example, we used empirical func-
tions to represent the nonlinear trend c(t), they are generally faster and straightforward to
use, but make stronger assumptions about the parameters of the data distribution of time
series; hence, non-parametric methods can be considered for further work.
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