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Abstract: The concept of risk assessment is an important tool in the asset integrity management
of power distribution systems. This manuscript presents a risk-based asset integrity management
(RBAIM) methodology for the optimization of power distribution assets using a time series analysis
approach. This approach deals with time series forecasting on risk assessment for low-voltage-level
(400/230 V) failures using the Python programming language and considering historical low-voltage
(LV) fuse failure data from a case study over 44 months, starting from 2019. The proposed approach
is deployed in a power distribution utility located in a densely populated area of Colombo district,
Sri Lanka. The authors proposed a methodical approach for the identification of priority components
for asset maintenance and repair ranking based on the risk index percentage value to enhance the
predictiveness of potential defects and estimate the risk of potential failures. The results show that
the proposed time series forecasting methodology for RBAIM is useful for power distribution utility
asset owner organizations for continuous monitoring, the evaluation of asset conditions, and the
implementation of proper maintenance and repair strategies to enable assets to perform at their
optimal level. The proposed RBAIM methodology enables practicing engineers to assure the asset
integrity of power distribution utilities.

Keywords: asset integrity management; low voltage failures; power distribution systems; RBAIM;
risk assessment; time series forecasting

1. Introduction

The asset integrity management (AIM) of power distribution systems is a challenging
task of balancing inputs from stakeholders, such as owners, local authorities, regulatory
bodies, and customers, with the decision criteria ranging from strategic to operational
levels [1,2]. The necessity of effective and efficient decision-making further magnifies the
complexity of AIM, depending on different planning horizons, such as the short, medium
and long term [1,2]. In this study, AIM is defined as “the means of ensuring that the
people, systems processes and resources which deliver the integrity, are in place, in use
and fit for purpose over the whole life cycle of the asset. Whole life cycle comprises:
design, construction, installation, commissioning, and operation” [3,4]. Decision-making,
design, and maintenance strategies under uncertainty, whilst meeting different stakeholder
requirements, are a crucial part of power distribution systems’ AIM [1,2]. Asset integrity
assurance (i.e., using an inspection and maintenance management process) with a limited
annual budget requires effective and efficient prioritization of associated factors [5]. Hence,
in order to overcome those challenges, methodical approaches for AIM are required.
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Power distribution infrastructure is composed of a significant number of geograph-
ically dispersed components, including static components such as transformers, fuses,
towers, poles, and power cables with rotary components such as load break switches,
sectioning switches, transformer tap changers, etc. [5,6]. Hence, the main challenge faced
by power distribution utilities is to maintain the integrity of the assets’ complex and com-
prehensive infrastructure [7]. The risk of failure of those components due to degradation,
external issues, manufacturing defects, etc. can reduce the integrity of the power distri-
bution network and can also be disastrous for the power distribution utility, especially in
highly populated areas [2,8,9]. Risk assessment is a vital tool in the asset and operational
management of power distribution assets [1,10]. Historical failure analysis of those compo-
nents is essential for power distribution system AIM to achieve high quality and reliability,
while managing costs, ensuring safety, and avoiding environmental hazards [2,11]. Hence,
risk-based asset integrity management (RBAIM) is required for the optimization of power
distribution assets.

Time series analysis of power distribution systems’ processes involves careful inves-
tigation of recorded data over time [12,13]. However, in the literature, most of the time
series analysis and forecasting methods that have been discussed mainly concern electricity
power distribution demand and energy forecasting [13–15]. Little research is available on
time series analysis for historical failure data of power distribution system components in
the literature on RBAIM [15–18]. Hence, the authors have observed that historical failure
data of power distribution system components can be analyzed using time series analysis
to make predictions for decision-making and scarce resource utilization. Therefore, devel-
oping a step-by-step methodology involving time series analysis and the concept of risk
to facilitate the decision-making process to provide a solution to fill the gaps that exist in
failure analysis is required for RBAIM.

This manuscript aims to develop a novel RBAIM approach for low-voltage (400/230 V)
failures of power distribution systems, selecting failures of low-voltage (LV) fuses, applied
to a regional section of a Sri Lankan power distribution utility. A Python program-based
time analysis methodology has been deployed for an RBAIM approach. The proposed
methodology involves a methodical approach to the identification and documentation of
LV failures, the recognition of maintenance ranking based on risk indexes, resulting in
the prioritization of AIM for optimum resource and spare part utilization. Hence, this
paper suggests an interesting and unique time series prediction approach, providing a
practical and systematic contribution to the related literature. Initially, the study’s research
background, the case study methodology and development are presented, considering LV
failures against a quality of power supply to consumer consequence, which is represented
by a reliability index called a system average interruption duration index (SAIDI) of power
distribution systems. After that, the results, discussions, and conclusion from the case
study are presented, including proposals for future research at the end of the manuscript.

2. Research Background
2.1. Assets, Risk, Maintenance Management, AIM, and RBAIM

The assets of electricity distribution infrastructure require inspection and maintenance
to achieve goals, such as optimal allocation of yearly budget, resources, and risk-based
performance assessment, which should be aligned with organizational objectives to make
data-driven decisions [19,20]. The Publicly Available Specification (PAS) 55 standard,
published by the British Standards Institution in 2004, necessitates the integration of orga-
nizational processes and practices to manage assets, performances, risks, and expenditures
over the life cycle to achieve the organization’s strategic plans in a sustainable and optimal
way [4,19,21]. Using ISO 55001 Asset Management Systems, organizations can manage
assets more effectively throughout the life cycle, whilst managing, improving, and imple-
menting significant assets [22]. Furthermore, ISO 31000 provides a methodical approach to
risk management through identifying risks, evaluating the probability of risk occurrence,
and determining the severity of the problems caused by an event [19,23]. In addition,



Eng. Proc. 2023, 39, 17 3 of 12

ISO 9001 (2015) indicates the identification of relevant risks, controlling throughout the
design with the use of a quality management system [9,24].

It is necessary to identify risks within the business process in order to implement appro-
priate measures to mitigate them [19,25,26]. Risk can be defined qualitatively/quantitatively
as the product of the probability of an event and its consequences [19,20,26]. Risk man-
agement involves risk assessment and evaluation for decision-making [19,20]. For power
distribution utilities, widely accepted business values are quality of supply (in terms of
loss of electricity to consumer minutes), safety (in terms of injuries to personnel and third
parties), financial impact (in terms of cost of damage to the organization), image (in terms
of reputation), and compliancy (in terms of regulations and legislations) [8,10,19].

The maintenance perspective can be divided into two main categories, namely, reactive
and proactive maintenance [19]. The supporting pillars for maintenance management
involve process, quality, information and communication technology (ICT), as well as
knowledge management [19,20]. With AIM, a set of systematic and proactive strategies
can be used to enable industrial assets to operate efficiently and safely during their life
cycle [3,4]. Hence, in order to achieve optimal AIM methodology, a RBAIM is required as a
systematic approach to managing the physical assets of an organization, with a focus on
minimizing risk and maximizing the reliability and safety of those assets.

2.2. Time Series Analysis and Forecasting

Many industries use time series forecasting for demand prediction, resource allocation,
predictive maintenance, financial performance, and various other applications [27,28]. Time
series forecasting is defined as a technique to predict future occurrences after analyzing
past trend data [18,27,29]. In this context, models are used to fit historical data to predict
future values [18,29]. Time series forecasting is a data-driven approach, which facilitates
effective and efficient planning [27]. Therefore, time series forecasting can be used for an
RBAIM approach to identify, assess, and manage the risks associated with physical assets.

The time series analysis approach starts with examining the historical data to check for
trends, seasonal patterns, cyclical patterns, and regularity effects [27,29]. The methods used
for time series analysis and forecasting include moving average (involves calculating the
average of the last n observations), exponential smoothing (involves assigning exponentially
decreasing weights to older observations), AutoRegressive Integrated Moving Average
(ARIMA—involves modeling the dependence between observation and a number of lagged
observations), Seasonal AutoRegressive Integrated Moving Average (SARIMA—involves
seasonality of time series data), and machine learning methods (involve algorithms such as
artificial neural networks) [18,27]. Accordingly, the proposed RBAIM methodology uses
ARIMA as a time series forecasting methodology.

The steps in time analysis and forecasting can vary, depending on the method being
used and the specific problem being solved [18]. A general outline of the steps for time
series analysis and forecasting includes data preparation; exploratory data analysis, which
involves visualizing data; summarizing statistical properties; checking for stationarity,
using either an Augmented Dickey–Fuller (ADF) test, a Kwiatkowski–Phillips–Schmidt–
Shin (KPSS) test or a Phillips–Perron (PP) test; appropriate preprocessing steps, such
as differencing or log transformation, which should be carried out if the data set is not
stationary; appropriate model selection; model fitting, evaluation, and forecasting for future
values of the time series; and model refinement [18,27].

3. Case Study Methodology and Development
3.1. Use of Case Study Methodology

A case study research methodology is adopted in this research. This involves scrutiniz-
ing a particular case to obtain deeper understanding of a particular phenomenon [30]. This
methodology involves steps such as defining the research question, selecting the case(s),
data collection, data analysis, reporting, and interpretation [30]. The different approaches
to case study methodology include the inductive approach (using data and observations to
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generate theories and explanations), the deductive approach (using theories and hypothe-
ses via observation and data), and the abductive approach (using observations to come
up with tentative explanations and testing, refining those via additional data collection
and analysis) [30]. In this case study, an abductive approach is used, as historical time
series data are used for tentative explanations and testing, with further refining of data
for forecasting.

3.2. The Case Study Background

The power distribution network of the Dehiwala area of the Ceylon Electricity Board
(CEB), Sri Lanka, has been selected for the application of the proposed time series forecast-
ing case study on RBAIM for LV fuse failures of power distribution systems. The Dehiwala
area has been selected as a representative area for the study, as it has a similar electricity
infrastructure to other CEB areas with comparatively higher consumer density, higher
consumer expectations, and a high industrial work capacity [9,10,16].

Through analysis of historical LV failure data for the overhead power distribution lines
of the case study region, the general reasons for LV failures have been observed to be LV fuse
failures, breakdown at the distribution transformer (DT), neutral leakage, and LV issues.
The study is based on LV fuse failures, which constitute the most frequently occurring LV
failure reason of all LV failures. LV fuses are used to protect the LV distribution network [31].

Although the risk of impact of LV fuse failures is comparatively low compared to
medium-voltage (MV) failures (i.e., the failures at the ranges of 33/11 kV), a single LV
failure causes power loss to a set of consumers in the same LV feeder, as depicted in
Figure 1. Hence, an LV fuse failure results in a significant impact to a group of consumers,
compared to a single consumer service connection level failure, which has an impact on
only one consumer. Furthermore, LV fuse failures from 1 May 2019 to 31 December 2022
are observed and recorded for 11 kV/0.4 kV DTs of capacities 100 kVA, 160 kVA, 250 kVA,
400 kVA, 630 kVA, and 800 kVA in the selected power distribution area of the selected case
study organization for the proposed RBAIM approach.
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Figure 1. Typical arrangement of power distribution system in CEB [31]. Figure 1. Typical arrangement of power distribution system in CEB [31].

3.2.1. LV Fuses

High rupturing capacity (HRC)-type current-limiting fuses of 160 A, with knife edge
type as per IEC 60269, are used by CEB as LV fuses in their power distribution networks [31].
Figure 2 shows a picture of a typical HRC fuse used by CEB.
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3.2.2. Probability of LV Failure

The probability of failure (PoF) of LV fuses for a particular DT capacity is obtained
using Equation (1) given below:

PoF =
number of LV fuse failures in the DT category per day

total number of DTs in the category
(1)

3.2.3. SAIDI and Consequence of Failure (CoF)

In order to measure the quality of the power system performance, reliability indexes
are incorporated [32]. In this study, SAIDI is used as a measure of consequence for quality
of power supply to consumers. For this research, SAIDI is defined as the average duration
of LV fuse failure interruptions per consumer on a daily basis for different capacities of
DTs. The failure rate is denoted by λi, the number of customers is given by Ni, and SAIDI
is given using Equation (2), as below:

SAIDI =

total duration of customer interruptions
per day due to LV fuse failures

per DT category
total number of customers served in the same DT category

=
∑ λiNi
∑ Ni

(2)

3.2.4. Risk Index Determination

An index of risk has been calculated for historical LV fuse failure data as PoF and
SAIDI as CoF, in relation to the selected case study organization; this is given under
Equation (3) below:

Risk index = PoF × CoF (3)

3.3. Development of Time Series Analysis Forecasting Based on RBAIM Methodology

The steps in RBAIM shall include asset identification with categorization; assess-
ment of risk associated with each asset, based on PoF and CoF; development of a risk
management plan, outlining the measures to manage or mitigate the identified risks; imple-
mentation of the risk management plan, establishing appropriate processes and procedures
for AIM; monitoring and review of the risk management plan; and continuous review and
improvement of the risk assessment process.

In this study, RBAIM using time series forecasting for LV fuses of power distribution
systems has been investigated. Figure 3 shows the basic flow chart used for the time series
forecasting for LV fuse failure data.
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In accordance with Figure 3, the recording of LV fuse failures was carried out to
calculate the probability of LV failures. Then, daily SAIDI data for each DT category with
respect to LV fuse failures were calculated. After that, daily percentage indexes of risk
were calculated for each DT category, as per Equations (1)–(3) for the selected duration of
44 months. Then, time series forecasting for test data and predictions for real future based
on risk index percentage values were carried out for each category of DTs.

Detailed Mathematic Modeling

Initially, historical data collection of daily LV fuse failures for 44 months were recorded
for 11 kV/0.4 kV 100 kVA, 160 kVA, 250 kVA, 400 kVA, 630 kVA, and 800 kVA DT categories.
Then, SAIDI data were calculated for each DT category of LV fuse failures. Risk index
percentages were calculated, using PoF as LV fuse failure and CoF as SAIDI, and recorded
in Comma Separated Values (CSV) files. After that, risk index percentage datasets were
visualized and decomposed to check for any time series patterns, trends, and seasonality
that might affect the performance of the time series model [33–35].

In the next step, stationary tests for the risk index percentage data sets were carried
out, using the Augmented Dickey–Fuller (ADF) test. For ADF, the null hypothesis is non-
stationarity, and the alternative hypothesis is stationarity [29,36]. The null hypothesis is not
rejected if the ADF statistic is less negative than the critical value, indicating that the time
series is non-stationary [29,36]. Then, the null hypothesis is rejected if the ADF statistic is
more negative than the critical value, indicating that the time series is stationary [29,36].

In this study, all ADF test results have shown that the test statistic is less than the
critical value for different confidence intervals. This confirms that all six categories of
risk index percentage data sets are stationary. If the time series data are found to be
non-stationary, it shall be transformed to stationarity using differencing, detrending, or
de-seasonalizing methods.

Autoregressive Integrated Moving Average (ARIMA) with optimal set of performance
parameters has been used to forecast the risk index percentages of LV fuse failures and
SAIDI of all categories of DTs. ARIMA is a popular and powerful time series model which
can capture the linear patterns in time series data [29,36]. The general form of ARIMA
model is ARIMA(p,d,q), where p gives the order of the autoregressive component (AR),
d gives the degree of differencing required to make the time series stationary (I), and q is
the order of the moving average component (MA). In the AR component of ARIMA, the
current value of the time series depends linearly on the past values up to lag p and is given
in the following equation [29,36]:

y(t) =∝ +∑p
i=1ϕiy(t− i) + εt (4)

In Equation (4), y(t) gives the current values of the time series, ∝ denotes a constant,
ϕi are the autoregressive coefficients that represent the linear relationship between the
current value and its past values up to lag p, and εt denotes the error term [29,36]. The MA
component of ARIMA assumes that the current values of the time series depend linearly
on the past errors up to lag q, and it is given in the following equation [29,36]:

y(t) = µ+ ∑q
i=1 θiεt− i + et (5)

In Equation (5), µ gives the mean of the time series, θi indicates the moving average
coefficients that represent the linear relationship between the current values and the past
errors up to lag q, εt is the current error term, and et is the white noise error term that is
independent of εt [29,36]. The differencing component (I) of ARIMA indicates the time
series stationarity through taking the first difference or a higher order difference, and it is
given via the following equation [26,33]:

y(t)′ = (y(t)− y(t− 1)) or y(t)′′ =
(

y(t)′ − y
(
t′ − 1

)
(6)
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In equation (6), y(t)′ and y(t)′′ are the first and second differences of the time series,
respectively. After determining the suitable ARIMA model for all the categories of data
sets, model diagnostics for all data sets were carried out to evaluate the fit of the ARIMA
model with the observed time series data, checking whether the model assumptions were
met or violated [33–35]. Accordingly, residual analysis, autocorrelation, and partial auto-
correlation suggested that model residuals are normally distributed for all the determined
ARIMA models.

Time series forecasting was carried out for one year, from 1 January 2022 to 31 De-
cember 2022, and the forecasted values were compared with the real values to check the
accuracy of the predictions. In the last step, the risk index percentages were forecast for
the real future from 31 December 2022 to 100 steps ahead, and the resulting CSV files
were obtained. The resulting mean squared error (MSE) and root mean squared error
(RMSE) values for risk index percentages of all categories of DTs were recorded. Figure 4
indicates the risk-based time series forecasting flow chart used for the Python program for
the RBAIM approach.
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4. Data Collection and Analysis

As per Figure 4, calculated DT category-wise risk index percentages for historical LV
fuse failure data and corresponding SAIDI data for 44 months were calculated, and the
resulting risk index percentages values were recorded in CSV files. The resulting risk index
data sets were examined to check for any time series patterns. Then, stationarity tests were
carried out for all DT categories [33–35].

The resulting one-step-ahead forecasts compared with real data for one year duration
and real future predictions for 100 steps ahead from 1 January 2023 are given in Figures 5–10
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for each category of DT for risk index percentages calculated using LV fuse failures and
corresponding SAIDI data.
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800 kVA.

5. Results and Discussion

Overall, Figures 5a, 6a, 7a, 8a, 9a and 10a show that the one-step-ahead forecasts
approximately align with the true values for all 11 kV/0.4 kV DT 100 kVA, 160 kVA,
250 kVA, 400 kVA, 630 kVA and 800 kVA categories of LV fuse failure and SAIDI-based
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risk index percentage data sets, respectively. The second (b) diagrams in all Figures 5–10
show the real future predictions for 100 steps ahead for risk index percentages of all types
of DT categories. The resulting average risk index percentage values are recorded in CSV
files, and the data extracted from the Python program for real future forecasts are given
in Table 1 for LV fuse failures and SAIDI data of all categories of DTs. Table 1 shows that
11 kV/0.4 kV 630 kVA DT has the highest risk of LV fuse failure and SAIDI consequence.,
Accordingly, resources and maintenance costs are to be allocated mainly for the DTs of
that category. Furthermore, DTs of 11 kV/0.4 kV 250 kVA & 400 kVA have more or less
resulting risk index percentage values, so resources shall be allocated similarly for those
two categories. For other categories of DTs, asset managers can allocate resources according
to risk index percentage predictions, as given in Table 1.

Table 1. Risk index prediction results.

11 kV/0.4 kV DT Category of
LV Fuses

The Average Risk Index
Prediction Values Risk Rank

100 kVA 0.8968 3 (moderate)

160 kVA 0.5102 2 (low)

250 kVA 5.0452 4 (high)

400 kVA 5.2839 4 (high)

630 kVA 20.8804 5 (very high)

800 kVA 0.0011 1 (very low)

The resulting mean squared error (MSE) and root mean squared error (RMSE) predic-
tions for risk index percentages of LV fuse failures of DT categories are given in Table 2. In
general, lower values of MSE and RMSE are desirable for accurate predictions. Therefore,
the values obtained for MSE and RMSE given in Table 2 are satisfactory for the desired
predictive accuracy for time series forecasts for the RBAIM model.

Table 2. Forecasted MSE and RMSE values.

Transformer Category of
LV Fuses

Mean Squared Error (MSE)
of the Forecast

Root Mean Squared Error
(RMSE) of the Forecast

100 kVA 0.02 0.14
160 kVA 0.02 0.13
250 kVA 1.85 1.36
400 kVA 1.06 1.03
630 kVA 0.97 0.98
800 kVA 0.0 0.0

According to the RBAIM approach, the development and implementation of the risk
management plan for the identified risk index percentage predictions for each DT category
and the continuous improvement of the risk assessment process shall be carried out by the
organization’s asset management professionals.

6. Conclusions and Recommendations

In this study, a time series forecasting approach for RBAIM has been developed, using
the Python programming language, for a power distribution utility located in a densely
populated area of Colombo, Sri Lanka. The established model involves historical LV fuse
failure data of different categories of DTs and corresponding SAIDI values to provide
risk-based predictions. Daily SAIDI values have been used as a measure of consequence for
the probability of LV fuse failures. The methodology can be adopted for failures of other
physical assets in a power distribution system. The ultimate goal of RBAIM is to prevent
catastrophic failures that can have severe consequences, such as loss of power supply,
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environmental damage, danger to personnel, and financial losses. Hence, this research
provides an RBAIM methodology with the support of data-driven decision-making for
predictive maintenance and prioritization of scarce resources and spare parts utilization
through analyzing PoF, using LV fuse failures, and CoF, using SAIDI.

Since time series analysis and forecasting can be used to make predictions about vari-
ous types of data, the resulting forecasts are not always accurate, and this can be influenced
by a variety of factors such as changes in the underlying data or unanticipated events.

Further research shall be carried out to investigate how to incorporate the time-
dependent nature of a system’s reliability for assuring asset integrity in power distribution
systems, with the support of a machine learning approach. Particularly, the risk of impact on
MV failures and with mean time to repair (MTTR) consequences for risk index assessment
of power distribution systems for proper resource utilization and decision-making for
predictive maintenance will be studied using a similar case study approach in the future.
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