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Abstract: A mathematical presentation of the surface rejuvenation model is used to relate the mean
velocity and temperature distribution to the mean vortex dwell time and approach distance. Coupled
with a proper estimate of these modeling parameters, it provides quantitative forecasts of the mean
thermophoresis velocity. As expected, the particles obtain inertia along the wall from the eddies in
the turbulent core and are trapped in the viscous sublayer where coherent temperature gradients
exist in the wall region. Playing an important role in particle transfer, this results in particle transfer
along the wall. Particle thermophoresis with small molecule diffusion may be the only mechanism
that enhances the particle transfer process in the viscous wall region.

Keywords: surface rejuvenation model; thermophoresis; residence time; approach distance

1. Introduction

The introduction should briefly place the study in a broad context and define the pur-
pose of the work and its significance. A theoretical model of the thermal drift mechanism
depends on a description of the thermophoretic velocity of a particle with a temperature
gradient. This was first observed for particles that are large compared to the mean free path
in the gaseous environment [1]. There was an important parameter affecting thermophore-
sis, which is defined by the Knudsen number Kn and the mean free path λ of gas molecules
and the particle radius rp.

Kn =
λ

rp
(1)

Particle sizes in the mean free paths fall into the continuum, transition, or free molec-
ular regimes, respectively, regardless of the size. Hidy and Brock [2] classified these
three regimes according to the values of Kn and suggested that in the slip region, Kn << 1.0,
in the transition region, 0.25 ≤ Kn ≤ 10.0, and in the free molecular environment, Kn > 10.0.
The mean free path of liquids is orders of magnitude smaller than the mean free path of
gases between 0.04 and 0.1 µm under ambient conditions [3].

For large aerosol particles (Kn << 1.0), Epstein [1] expressed the thermophoretic force,
FT , in an appropriate form for spherical particles in gas at rest as

FT = −9πrp
µ2

ρ
(

Kg

2Kg + Kp
)
∇T
T

(2)

where Kp is the particle’s thermal conductivity; Kg and ∇T are the thermal conductivity
and temperature gradient of gas, respectively. Under the steady-state condition, the
thermophoretic force balances the drag force, i.e., FT = 6πrpµVt. Therefore,

Vt = −
3
2

ν(
Kg

2Kg + Kp
)
∇T
T

(3)
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In Epstein’s calculations, the thermal force for particles of high thermal conductivity is
significantly underestimated.

Brock [4] indicated that this arises due to a lack of boundary conditions appropriate for
the slip flow and the convective terms. For this reason, the modification of thermophoretic
force was considered for the case of inclusion of Knudsen number corrections of the
temperature increase at the solid-fluid interface and the isothermal slip. In such a way, the
corresponding thermophoretic velocity can be appropriately estimated by

Vt = −
3
2

ν
(

Kg
Kp

+ CtKn)

(1 + 3CmKn)(1 + 2 Kg
Kp

+ CtKn)

∇T
T

(4)

Brock [4] chose reasonable ranges for the thermal jump coefficient Ct = 1.875∼2.48
and for the hydrodynamic slip coefficient Cm = 1.00∼1.27. Equation (4) is induced to
Equation (3) when Kn = 0. Although an agreement was found in the experimental
measurements obtained by Jacobsen and Brock [5], the proposed relationship for Vt failed,
while for particles with high thermal conductivity, the influence of the values selected for
the slip coefficient was significant. However, the discrepancy between experimental and
theoretical results is much less than that obtained by using Epstein’s model. Derjaguin and
Yalamov [6] argued that in the deviation of Epstein’s equation and in Brock’s work, there
are two questions. The first is that the heat flux in the gas volume is ignored, and the second
is that boundary conditions are used to assume that, for most gases before hitting the
interface, the distribution of the velocity of gas molecules is the same. They modified the
boundary conditions to account for the temperature jump and gave a modified expression:

Vt = −
1
2

ν
8Kg + Kp + 2CtKpKn

2Kg + Kp + 2CtKpKn

∇T
T

(5)

Derjaguin et al. [7] experimentally confirmed this modification within the limits of
experimental error as compared to both the Epstein and Brock models.

The particle radius of small aerosol particles (Kn >> 1.0) is small for the mean free
path of the gas. Thus, in the free molecular environment, the particles do not affect the
distribution of gas velocity and the force on the moving particle is directly obtained by
calculating the momentum transport per unit of time. Waldmann [8] applied this idea
for calculating the diffusional velocity of the particle, i.e., the motion of particles due
to existing concentration gradients. Since the thermal conductivity is not significant for
smaller particles, the thermal force can result from the net impulse in the direction of the
temperature gradient imparted to the particles (Equation (6)).

FT = −32
15

r2
p

K
V
∇T (6)

where V is the average thermal velocity of gas molecules and K =
15Kgµ

4m is the translational
part of thermal conductivity with the molecular mass m of gas. Jacobsen and Brock [5]
compared the experiment with the thermophoretic force equation of Waldmann [8] and
indicated that the equation of FT was in error by approximately 5% at rp

λ = 10 and 10%
at rp

λ = 5. The corresponding thermophoretic velocity was given by Waldmann and
Schmitl [9] as follows.

Vt = −
1

5(1 + πα
8 )

Kg

P
∇T (7)

where P is gas pressure and α is gas thermal diffusivity. It has been demonstrated that this
consideration is valid for Knudsen numbers greater than 10 [10].

Talbot et al. [11] modified the Brock model with an improved thermal slip coefficient,
which agrees well with experimental measurements for Kn ≤ 0.1. They have also compared
Zernik’s concept with fitting the available experimental data accurately over Knudsen
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numbers Kn, 0 ≤ λ
rp
≤ ∞. In consequence, they proposed a general equation for the

thermophoretic force as

FT = −12πrpµν
(

Kg
Kp

+ CtKn)

(1 + 3CmKn)(1 + 2 Kg
Kp

+ 2CtKn)

∇T
T

(8)

Correspondingly, an improved expression for the thermophoretic velocity can be
written as

Vt = −2Csν
(

Kg
Kp

+ CtKn)

(1 + 3CmKn)(1 + 2 Kg
Kp

+ 2CtKn)

∇T
T

(9)

in which the velocity jump coefficient Cm = 1.146, the temperature increase coefficient is
Ct = 2.18, and the thermal creep coefficient is Cs = 1.147 [12].

2. Surface Rejuvenation Model

The unsteady viscous sublayer surface regeneration model is based on the assumption
that fluid eddies occurring at different times reach the core of the turbulence in different
distances from the interface. In unsteady momentum and heat transfer, it is assumed that
heat transfer is controlled within the wall region such that a single vortex resides near the
wall. Neglecting convection and pressure gradient effects, the unsteady transport process
of a fluid with constant properties can be written as a single regeneration cycle as

∂ϕ

∂t
= <∂2 ϕ

∂y2 (10)

where the transport parameter ϕ represents the axial mean velocity or temperature and t is
the instantaneous contact time of eddy. < stands for turbulence inertia, < = ν + εt, and for
the heat flux, < = α + αt. Since both processes of momentum and heat are governed by
the same equation, the eddy thermal conductivity αt and the eddy viscosity εt due to the
diffusive action of turbulence are equal. The initial condition and boundary condition are
given as

ϕ = γ(y)[1−U(y− H)] + ϕ∞[U(y− H)]att = 0
ϕ = ϕwaty = 0

ϕ = ϕ∞asy→ ∞
(11)

where U(y) is the unit step function, ϕ∞ represents the bulk stream velocity u∞ and
temperature T∞, and ϕw is a specified temperature Tw of the wall where uw = 0. H is
the approach distance of the instantaneous eddy from the wall or the thickness of the
viscous sublayer, and γ(y) is the initial profile at the first instant of rejuvenation for y < H.
The quantities t, H, and γ(y) follow the statistical distribution with relevant distribution
density function pt(t), pH(H), and pγ(γ). Therefore, by definition, the mean profile can be
written as

ϕ(y) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
pt(t)pγ(γ)pH(H)dτdγdH (12)

The differential equation in initial-boundary conditions is converted to a domain prior
with each term multiplied by the distribution density function. Danckwerts [13] proposed
that the contact time is exponentially distributed as

pt(t) =
1
τ

e−
t
τ dt (13)

where τ express the mean residence time between two continuous eddies. Because the
predictions for the mean transport properties obtained by the Hanratty [14] model are
inherently independent of time distribution, the analogical forms of pγ(γ) = e−γ/γ/γ dγ
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and pH(H) = e−H/H/H dH are used in this study. The transformed mean profile becomes

ϕ− γ(y)e−
y
H − ϕ∞

(
1− e−

y
H

)
= <τ

∂2 ϕ

∂y2 (14)

where ϕ is the mean profile for pγ(γ) and pH(H).
If the contact time t is replaced by that of the residence time τ, γ(y) can be calculated by

γ(y) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
pτ(τ)pγ(γ)pH(H)dτdγdH (15)

The contact time t in the Danckwert random distribution and residence time τ is
related by γ(y) = ϕ(y). This implies that the mean distribution of the residence time
at the first moment is the same as the mean distribution of the residence time average.
Equation (14) can then be written as

(ϕ− ϕ∞)(1− e−
y
H ) = <τ

∂2 ϕ

∂y2 (16)

and the corresponding boundary conditions are

ϕ = ϕwaty = 0
ϕ = ϕ∞aty→ ∞

(17)

Accurate analytical solutions of the turbulent convection integrated surface rejuvena-
tion model are obtained as

ϕ− ϕ∞

ϕw − ϕ∞
=

J2β(2βe−
y

2H )

J2β(2β)
(18)

where β = H√
<τ

.

Talbot’s equation is adopted to calculate the mean thermophoretic velocity, Vt, of the
particles, which is expressed as

Vt = −k
ν

T
∂T
∂y

(19)

where the thermophoretic coefficient k is a ratio of the Knudsen number and other proper-
ties of particles. Then,

k =
2CsCc(

Kp
Kg

+ CtKn)

(1 + 3CmKn)(1 + 2 Kp
Kg

+ 2CtKn)
(20)

where Cc is the Cunningham correction factor; k is the thermophoretic coefficient, typically
varying from 0.2 to 1.2. The temperature gradient is calculated according to Equation (18),
which is the same as the result shown in Ref. [15] for the mean temperature distribution in
turbulent convective heat transfer, that is,

T(y)− T∞

Tw − T∞
=

J2ϑ(2ϑe−
y

2H )

J2ϑ(2ϑ)
(21)

where ϑ = H√
ατ

. Thus, the distribution of the mean thermophoretic velocity on the wall is
obtained by

Vt =
kν√
ατ

 e−(
1

2H
)y J2ϑ−1(2ϑe−(

1
2H

)y)− J2ϑ(2ϑe−(
1

2H
)y)

T∞
Tw−T∞

J2ϑ(2ϑ) + J2ϑ(2ϑe−(
1

2H
)y)

 (22)
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In the wall area, the expression of the average velocity distribution is taken from
Equation (19) as follows.

u(y) = u∞

(
1− J2υ(2υe−(

1
2H

)y)

J2υ(2υ)

)
(23)

where υ = H√
ντ

. τ is assumed to represent the mean residence time throughout sublayer
development. According to the local mean friction velocity, the mean residence time is
expressed as u∗ from the definition of the wall shear stress σ0 = ρu2

∗ = µ ∂u
∂y

∣∣∣
y=0

. As a

result, the mean residence time is calculated in respect to the commonly used dimensionless
quantities by

τ+ =

√
2
f

(
J2υ+−1(2υ+)− J2υ+(2υ+)

J2υ+(2υ+)

)
(24)

where τ+ = u∗
√

τ
ν , υ+ = H+

τ+
, and H+

= Hu∗
ν . The friction factor f is required and is

accurately calculated as f = 0.07725
[
log( Re

7

)
]−2 for the flow by turbulence in smooth

tubes [16]. Following this, the dimensionless distribution of the mean thermophoretic
velocity on the wall is obtained by

V+
t =

Vt

u∗
=

kPr
1
2

τ+

 e
−( 1

2H+ )y+
J2ϑ+−1(2ϑ+e

−( 1
2H+ )y+

)− J2ϑ+(2ϑ+e
−( 1

2H+ )y+
)

T∞
Tw−T∞

J2ϑ+(2ϑ+) + J2ϑ+(2ϑ+e
−( 1

2H+ )y+
)

. (25)

where ϑ+ = Pr
1
2 (H+

τ+
) and y+ = yu∗

ν .
The Bessel function Jn(x) is defined as

Jn(x) =
1
π

∫ π

0
cos(xsinθ − nθ)dθ (26)

The function is based on the Sookne’s code [17]. The order of the Bessel function must
be a positive integer with a backward recursive procedure and strict error control. The
relationship between the two passed parameters is defined as

ϑ+ = Pr
1
2 υ+ (27)

The numerical predictions of thermophoretic velocity distribution are restricted to the pos-
itive integers Pr

1
2 because the orders of the Bessel function υ and ϑ of Equations (24) and (25)

must be positive integers and n.

3. Results and Discussions

The radial resolute of the fluctuation velocity near the wall region is used to build a
viscous sublayer randomly. The analysis result of momentum transfer shows a relationship
between the mean residence time τ+ of the mean wall shear stress and the mean velocity
profile. A sequence of τ+ and distance H+ is depicted in Figures 1 and 2. Relative to the
Reynolds number and dimensionless pipe diameter, the sequence was calculated by

d+ = Re

√
f
2

(28)
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Figure 2. Variation of dimensionless mean sublayer thickness with pipe diameter and Reynolds
number.

The eddy appears so frequently at lower Reynolds numbers, and the sublayer devel-
opment is maintained almost at the wall region. Reversely, the sublayer is progressively
established from the wall and seems to be evicted out of the wall region. The variable is a
dimensionless mean residence time of turbulence, τ+. The result of the sublayer model by
Meek and Baer [18] shows that for Reynolds numbers greater than 104, the mean residence
time is constant at 18.0. The visual observations of Corino and Brodkey [19] indicated that
the dimensionless cycle period of the viscous sublayer is 14 ≤ τ+ ≤ 17 in the smooth tube
flow of 2× 104 < Re < 5.5× 104. The surface rejuvenation model calculation shows that
the transfer parameter υ is around 13.0; its coinciding with the visual observations (Figure 1)
seems satisfactory. Therefore, the prediction of thermophoretic velocity distribution relative
to Prandtl number and temperature gradient is calculated with υ = 13.0 and τ+ = 17 for
Re = 5.0× 104.

With fixed values of Reynolds numbers and υ, a plot of the calculated thermophoretic
velocity relative to Prandtl number is shown in Figure 3 for Tw − T∞ = ± 50 oC. The ther-
mophoretic velocity becomes greatest near the surface by the steep temperature fluctuation
since the sublayer oscillations generate wall temperature fluctuations. The velocity is closer
to the surface with increasing Prandtl number and diminishes rapidly in the center of
the pipe. The amplitude distribution is broad, especially at low Prandtl numbers, and is
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sharper at higher Prandtl numbers. A discrepancy in slope near the edge of the sublayer
indicates an enhancing coupling of the thermal and turbulent mechanisms or appears due
to the semi-infinite boundary condition.
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If particles are suspended in turbulent flow, turbulence governs the particle transport
in the core, which becomes steadily weak when approaching the wall. When the eddy
impaction induced by turbulence in the outer boundary layer is acting alone, the particles
tend to gather in the viscous sublayer. Coherent temperature gradients are observed along
the wall, playing a critical role in particle transport. Figure 4 demonstrates the intensity of
the thermophoretic mechanism and indicates a pronounced increase in the thermophoretic
velocity with increasing temperature difference, Tw − T∞. The difference widens at the
surface where the thermal gradient is greatest. As expected, thermophoresis of particles
with the diffusion of small molecules may be the only mechanism that increases particle
transfer near the viscid wall. If thermal fluctuations are higher in the area near the wall,
the actual transfer rate is expected to be higher. Changing the temperature gradient in
the cooling section significantly affects thermophoretic deposition. When heated, reverse
thermophoresis moves particles away from the wall, while the transport by turbulence
makes particles move towards the wall. As these two effects interact, particles gather in
certain areas close to the wall.
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