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Abstract: This work focuses on how to best degrade organic pollutants from wastewater by immo-
bilizing TiO2 on activated carbon peanut shells (ACPNS) using the co-precipitation method in a
hydrothermal process under simulated solar light for the first time. The produced ACPNS–TiO2

shows a high degradation efficiency of MB dye molecules under a response surface optimization
model. The degradation efficiency of the 5th repeated cycle of the ACPNS–TiO2 was 74.64%, indicat-
ing good reusability of the material. This work showed that ACPNS–TiO2 might be effectively used
for industrial wastewater treatment reducing the overall cost of pure chemicals.

Keywords: activated carbon; TiO2; response surface models; advance oxidation process; optimization
analysis

1. Introduction

Water contamination is a problem faced by many countries today and has affected
the entire world due to using this contaminated water for various activities [1]. Water
contamination worldwide results from organic, inorganic, and biological pollutants [2].
These pollutants contain toxic chemicals that affect human health and the environment at
large. Many methods have been employed in the treatment of this contaminated water,
including the convectional treatment method and the advance oxidation method [3]. TiO2-
based photodegradation is an advanced oxidation method used to break down these
organic contaminants in wastewater, making it safe for use. TiO2 acts as a photocatalyst
that absorbs photons in the presence of ultraviolet radiation to undergo oxidation and
reduction reactions to break down the organic contaminant in water [3].

It has strong aqueous stability and photocatalytic activity, making it an ideal catalyst
for enhanced photodegradation of water pollutants [2]. Earlier research has shown that
using TiO2 in its powder form leads to high photodegradation efficiency under UV light.
It does, however, suffer from a high rate of photogenerated electron/hole recombination,
as well as technical difficulties associated with post-treatment of treated water, such as
catalyst recycling and achieving powder-free water [4].

Several efforts have been made to improve the photocatalytic activity and the sepa-
ration of treated effluent by loading the TiO2 nanoparticles on various supports [5]. TiO2
coating surfaces have poor photocatalytic performance due to restricted mass transfer of
contaminant to the photocatalyst and reduced particle distribution [6]. Supporting the semi-
conductor on an adsorbent surface, such as activated carbon (AC), has been proven by a
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number of studies to make separation from the effluent more easier and more efficient [7,8].
Nevertheless, the cost of pure activated carbon is high, and activated carbon (AC) itself
has not been attributed to any photocatalytic properties. It does enhance the adsorption of
pollutant molecules on photocatalyst surface, hence boosting the photocatalytic degrada-
tion performance [9]. In addition, there are problems with waste disposal that arise before,
during, and after industrial and agricultural processing [10]. Several developing nations
have poor waste management systems and generate enormous volumes of this kind of
trash [10,11]. Inadequate action to mitigate the resultant dangers might have disastrous
consequences. Users of water and aquatic life may be placed in danger if these pollutants
are washed into water sources [11,12]. The Yet, agricultural solid wastes are rich in carbon
and might be used as a low-cost and easily accessible carbon adsorbent alternative.

For the first time, agriculture waste (peanut shell) was converted into activated carbon
using the top-down approach, and immobilization of TiO2 nanoparticles was achieved at a
mass ratio of 1:3. The novel materials were applied under a simulated solar photo reactor
for photodegradation of methylene blue (MB) dye. The impacts of operational factors such
as catalyst dosage, pH, and MB concentration were investigated in response surface models.
The reusability was assessed based on the optimal parameters, and the operational cost
was estimated.

2. Materials and Methods

In this investigation, the peanut shell was obtained from Alexandria, Egypt. Potassium
hydroxide (KOH) and sodium hydroxide pellet (99% NaOH) were supplied from Germany
(Merck KGaA). Hydrochloric acid (37% HCl), titanium oxide (TiO2), and methylene blue
(99% MB) were obtained from Fisher Scientific Company, Leicester, UK.

The collected peanut shell was washed and dried in an oven at 90 ◦C for 2 days, after
which it was milled to obtain a size of 106 um. The sample was carbonized at 500 ◦C
for 120 min under an N2 environment, from which it was soaked overnight in a KOH
solution. The sample was then decanted and activated at 900 ◦C for 120 min under an
N2 environment. The resulting sample was washed until the pH was neutral, dried in
an oven for 12 h, and named activated carbon peanut shell (ACPNS). The ACPNS–TiO2
was prepared by using the co-precipitation approach in a hydrothermal process [13] In
brief, 40 mL of deionized water was combined with 2 g of TiO2 and 6 g of ACPNS and
sonicated for 60 min at 45 kHz. The ACPNS–TiO2 composite was dried repeatedly at 100 ◦C
overnight. The sample was washed, filtered, and dried at 110 ◦C for 60 min to remove any
surplus impurities. The resulting sample was then calcinated for another 60 min at 600 ◦C
and named immobilized ACPNS–TiO2.

The composition of the produced samples, including the chemical and elemental com-
ponents, was determined using Energy-Dispersive X-ray Spectroscopy (JEOL JEM-2100F,
JEOL Ltd., Kyoto, Japan) and X-Ray fluorescence (Shimadzu XRF, Shimadzu Corporation,
Kyoto, Japan). A scanning electron microscope was used to examine the microstructure,
morphology, and nanostructure of the prepared sample (JEOL JSM-6010LV SEM, JEOL
Ltd.). High-resolution images were obtained using a transmission electron microscope
(TEM). The samples’ bonds and functional groups were also investigated using a Fourier
Transform Infrared Spectrometer (Shimadzu FTIR-8400s, Shimadzu Corporation). X-ray
diffraction (Shimadzu XRD-6100, Shimadzu Corporation) with a 1.54 Cu-K radiation beam
was used to study the crystallographic structures of novel materials.

The experiment was carried out using the matrix parameters from the response sur-
face models at ACPNS–TiO2 dosage (10–60 mg/L), pH (2–12), and MB concentrations of
10–50 ppm in a simulated solar photo reactor consisting of a metal halide lamp (Philips)
with a photo flux of 220 Wcm2, a wavelength of 510 nm, and a power of 400 W placed
15 cm above the solution surface. A total 5 mL of the product was collected in a test tube
at 10 min intervals and centrifuged at 6000 rpm for 10 min to remove the nanocomposite



Eng. Proc. 2023, 37, 96 3 of 7

catalyst. MB absorbance was measured using a UV–vis spectrophotometer at a wavelength
of 663 nm. The degradation efficiency (η) is then calculated using Equation (1) [14].

η = (∆C)/C0 × 100 (1)

where C0 denotes the concentration at zero time, and ∆C denotes the difference between
the initial concentration and the concentration at any given time, t. The degradation
intermediates and transformation product were identified using liquid chromatography–
mass spectrometry (LC-MS (2020), Shimadzu) with the result shown in Figures S1 and S2
displaying complete degradation without toxicity.

3. Result and Discussion
3.1. Characterization of the Prepared Samples

Figure 1a,b show SEM images of the nanocomposite ACPNS and ACPNS–TiO2. This
was conducted to examine the surface morphology of the prepared ACPNS absorbent
and ACPNS–TiO2 photocatalyst. As shown in Figure 1a, at 5000 magnifications, the
findings indicate that the ACPNS has a smooth surface with different pore structures. The
macropores are wide and connected grains may also be seen in the SEM image. The SEM
image of ACPNS–TiO2 indicates that the spheric nanostructures of the TiO2 nanoparticles
were completely immobilized in the pores of the ACPNS as shown in Figure 1b. The
TEM image shown in Figure 1d demonstrates that the immobilization was completed in
a nanoform, and the EdX analysis of the ACPNS–TiO2 as shown in Figure 1c reveals that
prepared catalyst contains 58.03 wt% of C, 14.29 wt% of O, and 27.67 wt% of Ti.
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Figure 1. Cont.
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Figure 1. (a) SEM image of ACPNS, (b) SEM image of ACPNS–TiO2, (c) EDX of ACPNS–TiO2,
(d) TEM of ACPNS–TiO2, (e) FTIR of ACPNS, Pure TiO2, and ACPNS–TiO2 (f) XRD of ACPNS, Pure
TiO2, and ACPNS–TiO2.

The FTIR spectra in Figure 1e confirm the presence of various functional groups in
the crystal lattice, with the stretching vibration bond at 3540 indicating the O-H hydroxy
group and that of 2932 showing the C-H vibration in the raw ACPNS and the immobilized
ACPNS–TiO2 [11]. The bending vibration bond at 1638 demonstrates the C=C and O-H
bond in the activated carbon, and the TiO2 with the vibration at 1373 showing the Ti-O
bond FTIR spectra stretch bond at 1400 confirms the presence of C-O and C=O bond, which
contributes to the absorption of molecules of pollutant [11]. Figure 1f depicts the XRD
diffractograms of arbitrarily oriented graphitic microcrystals, as indicated by the peak
at 2θ ≈ 26◦, which corresponds to the (002) plane, which is extremely dominant in the
ACPNS [11]. The characteristic peaks at 25.31◦, 36.95◦, 37.80◦, 38.57◦, 48.03◦, 53.89◦, 55.07◦,
62.69◦, 68.72◦, 70.30◦, and 75.02◦ correspond to the (101), (103), (004), (112), (200), (105),
(211), (204), (116), (220), and (215) crystallographic plane for pure TiO2, (Anatase, TiO2
JCPDS Card No. 01-071-1166). The distinctive peaks for pure TiO2, and ACPNS exist in
ACPNS–TiO2 as shown in Figure 1f, indicating the formation of immobilized ACPNS–TiO2
at a ratio of 3:1.

3.2. Application of the Produce Novel Catalyst for MB Photodegradation Using Response
Surface Models

Seventeen separate experiments were run, and the photodegradation efficiencies of
MB dyes were obtained and modeled at 60 min irradiation time using the Box–Behnken
design (BBD) model. The link between the factors and the degradation efficiencies of MB is
described in Equation (2).

Y(%) = 79.71 + 11.60A + 13.18B − 10.56C − 0.13AB − 2.78AC − 2.72BC − 4.76A2 − 8.70B2 − 10.17C2 (2)

where Y (%) is the degradation Efficiency (%) of MB, A is ACPNS–TiO2 dosage, B is pH,
and C is MB Concentration at a time of 60 min. The high value of R2 (0.9906) and adjusted
R2 (0.978) and the standard deviation of 2.43 provided evidence that the model was suitable
for the application.

In order to determine whether the model is significant, an ANOVA test for MB degra-
dation efficiency was carried out, and the results are shown in Table 1. According to the
F-values and p-values, the ACPNS–TiO2 dosage and the pH had a more substantial impact
on the photodegradation efficiency of MB, while MB concentration had the least amount of
influence. Moreover, the low p-value indicates the significance of the prediction model.
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Table 1. ANOVA report for the degradation efficiency of MB at 60 min.

Source Sum of Squares df Mean Square F-Value p-Value

Model 4356.71 9 484.08 81.81 <0.0001
A-ACPNS–TiO2 dosage 1075.55 1 1075.55 181.76 <0.0001

B-pH 1389.96 1 1389.96 234.89 <0.0001
C-MB Concentration 891.90 1 891.90 150.72 <0.0001

AB 0.0676 1 0.0676 0.0114 0.9179
AC 30.91 1 30.91 5.22 0.0562
BC 29.65 1 29.65 5.01 0.0602
A2 95.51 1 95.51 16.14 0.0051
B2 318.71 1 318.71 53.86 0.0002
C2 435.51 1 435.51 73.60 <0.0001

Residual 41.42 7 5.92
Lack of Fit 35.23 3 11.74 7.59 0.0
Pure Error 6.19 4 1.55

3.3. Effect of ACPNS–TiO2 Dosage, pH, and MB Concentration on Degradation Efficiency

The influence of ACPNS–TiO2 dosage on MB photodegradation efficiency was shown
by a 3D response surface plot in Figure 2. The increase in ACPNS–TiO2 dosage improves
MB photodegradation efficiency by increasing the number of active sites that may absorb
photons and create reactive species [3,4]. However, applying a catalyst dosage greater than
the optimal (56.75 mg/L) reduces the effectiveness of the photodegradation owing to the
scattering effect, as shown in Figure 2a. This is because of the increase in solution turbidity,
which is caused by the high catalyst dosage leading to the reduction of photons of light
exciting the active sites of the catalyst [3,4]. Nevertheless, a positive relationship existed
between the ACPNS–TiO2 dosage and the pH. The reaction interaction effect between
ACPNS–TiO2 dosage and MB concentration can be further described according to the
analysis of variance in Table 1. There was a significant relationship between ACPNS–TiO2
and MB concentration. This relationship is also depicted in the 3D surface plot Figure 2b,
where increasing ACPNS–TiO2 dosage increases degradation efficiency as MB concen-
tration increases. A numerical optimization study was conducted where the optimum
operating values were pH of 11.9, ACPNS–TiO2 dosage of 56.75 mg/L, MB concentration of
20.77 ppm, and an irradiation time of 60 min with photodegradation efficiency of 96.34%.
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3.4. Stability and Reusability of ACPNS–TiO2

The photodegradation efficiency of MB utilizing immobilized ACPNS–TiO2 was exam-
ined, as demonstrated in Figure 3, in five consecutive repeating cycles of the degradation
process at the obtained optimum conditions to evaluate the reusability and industrial
application of the ACPNS–TiO2. The photodegradation efficiencies of the repeating cycle
were 96.98%, 94.56%, 85.45%, 81.76%, and 74.64%, respectively, which confirms the stability
and reusability of the ACPNS–TiO2
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Figure 3. The reusability performance of ACPNS–TiO2 (conditions: ACPNS–TiO2 of 56.75 mg/L, pH
of 11.9, and MB concentration of 20.77 ppm at irradiation time of 60 min).

4. Conclusions

In this work, raw agriculture waste was successfully synthesized, activated, and
TiO2-immobilized for photodegradation of MB dye. Characterization of the produced
materials was achieved for SEM, FTIR, TEM, EDX, and XRD. The result demonstrated that
the produced catalyst is in a nanoform with stable immobilization structures composed of
different crystalline peaks. The degradation efficiency of ACPNS–TiO2 was studied, and
we achieved almost a complete degradation of MB molecules after 60 min irradiation time.
The photodegradation was optimized using response surface models where we attained
96.34% degradation efficiency at a pH of 11.9, ACPNS–TiO2 dosage of 56.75 mg/L, MB
concentration of 20.77 ppm, and a time of 60 min. The MB degradation efficiency in five
repeating cycles at the optimum parameters was 96.98%, 94.56%, 85.45%, 81.76%, and
74.64%, respectively.
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(b) 273 m/z, (c) 169 m/z, (d) 158 m/z, (e) 94 m/z; Figure S2: Identified transformation products and
proposed photodegradation pathway of MB dye using ACPNS–TiO2 nanocomposite catalyst.
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