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Abstract: Empirical and machine learning models are estimation tools relevant to obtaining scalable
solutions to engineering problems. In this study, response surface methodology (RSM) was incorporated
to correlate the experimental findings based on mathematical models. Artificial neural networks (ANN)
and adaptive neuro-fuzzy inference systems (ANFIS) were the artificial intelligence tools used to create
trainable algorithms. Feed data consolidated hydration temperature (50 to 90 ◦C), hydration time
(3 to 7 h), sulphation temperature (120 to 160 ◦C), diatomite to hydrated lime ratio (0 to 1), and inlet
gas concentration (500 to 2500 ppm) were the independent variables mapped against sulphur capture
capacity (Y1—5 to 54%) and reagent utilisation (Y2—4 to 42%) as the dependent variables. Statistical
error techniques such as root mean square (RMSE), mean square error (MSE), and the coefficient of
determination (R2) were used to quantify the model accuracy and cost analysis. The ANN models
presented more acceptable and reliable predicted data, with R2 values greater than 99% compared to
the RSM and ANFIS models. The ANFIS models showed overfitting deficiencies that affected learning
and training. These findings suggest that the ANN models are a more suitable option for accurate and
dependable data estimation in similar engineering applications.

Keywords: desulphurisation; emission control; fuzzy inference systems; neural networks;
numerical models

1. Introduction

Coal is undoubtedly the primary raw material for electricity generation globally. South
Africa is Africa’s most developed economy and has high energy demands to sustain its
vast industries and domestic energy appetite. A total of 13 state-owned Eskom power
plants jointly generate 37,698 MW for consumption across South Africa [1]. This translates
to Eskom being the leading sulphur dioxide (SO2) emitter in Africa. SO2 emissions have
exacerbated human health through occurrences of respiratory or heart infections. Acid
rain formation from the SO2 in the atmosphere chemically combining with rainwater leads
to the poisoning of aquatic ecosystems and damage to limestone, marble, and cultural
buildings [2,3]. Flue gas desulphurisation (FGD) is the standard approach relevant to
mitigating SO2 emissions. This end-of-pipe technique relies on an alkaline reagent that
neutralises the acidic SO2 compound in the flue gas stream, forming a sulphate (SO4

2−)
or sulphite (SO3

2−) salt. Dry FGD is a system developed to counter the high start-up
and maintenance costs associated with wet and semi-dry units. It is commercially and
operationally limited by low SO2 capture capacity and sorbent utilisation.
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Enhancing the effectiveness and productivity of the dry FGD system involves the use
of process simulation and optimisation techniques. Response surface methodology (RSM)
is a quantitative method used to decipher the complex correlation between multiple inde-
pendent parameters and dependent (response) variables. A set of mathematical equations
based on different experimental architectures are generated to model this relationship. The
experimental model can be anchored to either a Full Factorial Design (2-level or 3-level
FFD), a Box–Behnken Design (BBD) or a Central Composite Design (CCD) [4]. An artificial
neural network (ANN) is an artificial intelligence system used to map relationships in vast
datasets through learning and extracting relevant features. This models the pathways in
the human brain and how neuron signals travel through the brain cells to elicit a reaction.
ANN uses sets of algorithms to create models that can be used to solve complex problems.
It is made of three layers through which metadata traverses before an estimated output is
produced [5]. The adaptive neuro-fuzzy inference system (ANFIS) is a hybrid soft com-
puting technique that combines the learning ability of the ANN and fuzzy logic reasoning.
ANFIS is sectioned into five layers, including the input layer, the membership function
(MF) layer, the normalised layer, the fuzzy IF-THEN rule layer, and the output layer. The
MF permits tuning as a measure to improve computation accuracy [6].

In this study, RSM, ANN, and ANFIS models were integrated to dry FGD forecasting
by statistically analysing the synthetic outputs generated and the error produced by each
tool. We fully acknowledge that the experimental metadata used do not constitute a huge
dataset. However, this is sufficient to create models that can be used as a blueprint in similar
studies. The modelling results from this case study are relevant to establishing optimisation
and simulation procedures applicable to dry FGD. This report attempts to fill in the gap left
by the paucity of comparative literature on these three modelling techniques by offering
useful details on the approaches that are most useful for predicting desulphurisation and
sorbent conversion efficiency and how their performances compare against one another.

2. Materials and Methods

The sorbent synthesis procedure and the fixed bed SO2 adsorption experiments took
place as documented in a previous study [7]. A unique sorbent was formulated using cellulose
nanocrystals as the Ca(OH)2 particle growth template, while diatomite was incorporated
as the sorbent additive at different ratios. The polynomial model established in the RSM
system was formulated using the Design Expert (v13.0.5.0) CCD, set at an alpha level of
2 (α = 2). This generated 50 test runs from five inputs (hydration temperature—50 to 90 ◦C,
hydration time—3 to 7 h, sulphation temperature—120 to 160 ◦C, diatomite to hydrated
lime ratio—0 to 1) and two outputs (sulphur capture capacity (Y1)—5 to 54% and reagent
utilisation (Y2)—4 to 42%). These metadata were used as feed information for the machine
learning (ML) models (Table 1). The MATLAB R2015 v8.5.0.197613 language was used to
initialise the ANN and ANFIS scripts. Prior to ML computation, metadata preprocessing was
performed using the min-max normalisation procedure to minimise model inaccuracy that
can arise due to differences in variable magnitude [8]. Several ANN models were trained
using the Levenberg–Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate
Gradient (SCG) techniques, with hidden cell configurations ranging from 7 to 10. The linear
(purelin) and nonlinear sigmoid (logsig and tansig) functions were investigated as trigger
mechanisms for data transmission from the hidden layer to the output layer. The preset
dividerand function randomly sectioned feed data into 70% training (30 sets), 15% testing
(10 sets), and 15% (10 sets) validation. The ANFIS models involved the development of
a grid partitioning (genfis1) or subtractive clustering (genfis2) Sugeno-type fuzzy inference
system (FIS), where five inputs were classified with one output at a time. The gbellmf, trapmf,
trimf, gauss2mf, dsigmf, pimf, and gaussmf membership functions were compared for the
computation of the input data. Thirty-five data sets were used to train the ANFIS models
while 15 data sets were used in testing. The predicted values were analysed by the constant
type MF after optimisation using either the hybrid or backpropagation algorithms. Model
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validation induced the application of accuracy evaluation using the R2 method and the loss
function analysis using RMSE and MSE

Table 1. Generic equations of the best RSM, ANN, and ANFIS models.

Tool Model or Algorithm Equation

RSM Quadratic model Y = β0 + β1x1 + β2x2 + β11x2
1 + β22x2

2 + β12x1x2 + ε
ANN BR algorithm Y = f (w × x + b)
ANFIS Genfis1—BP algorithm Y = w0 + w1x1 + w2x2 + · · ·+ wnxn

β0 is the intercept term, β1 and β2 are linear coefficient terms, β11 and β22 are the quadratic terms, x, x1, and x2
are the input terms, ε is the RSM error value, b is the ANN bias vector, w is the ANN synaptic weight, f is the
node trigger function, w0, w1 · · ·wn are the ANFIS network weights, and Y is the overall predicted data.

3. Results and Discussion

The models used in this study were assessed based on the forecasting accuracy of
the sulphation (Y1) and reagent utilisation (Y2) responses. Conventionally, the superior
model generates values in proximity to the actual values. RSM was investigated as a tool
efficient in deciphering the relationship between intermingling multiple input parameters
and expected targets. From the developed model, it is possible to identify the optimised
input features that present a highly desired response. The RSM program developed
a quadratic mathematical model with R2 values of 0.9583 for Y1 and 0.9614 for Y2. The
ANOVA data of both models indicated p-values of less than 0.0001 which validate their
significance [9]. ANN utilised different model designs based on the number of hidden cells
and the learning algorithm. The BR script combined with a 5-10-2 ANN design achieved
an overall R2 of 0.9973 with an MSE of 0.023. This results from enhanced learning as
no validation steps are performed in the BR algorithm sectioning more data for network
training. This algorithm can accommodate inputs from small data sets using a penalty term
that minimises overfitting ensuing from poor data generalisation [10]. This feature renders
this script relevant in mapping the feed data in our study. LM was investigated as the study
constituted a regression problem. It also lacks computation complexity and is suitable when
fast simulations are needed. SCG is also applicable to nonlinear and complex relationships
which are present in the dataset used in this study. The SCG and LM were outperformed as
they work effectively with large networks constituting vast metadata. Ten hidden cells had
higher accuracy due to improved classification of unseen data, consequently, more patterns
between the inputs and outputs could be represented by this architecture. The logsig
activation function was adequate in adapting to occurrences of non-linearity in the feed
data owing to its smooth S-shaped orientation. This permits an ANN system to comprehend
more complex information within a data set thereby minimising overfitting [11]. All ANFIS
models produced outcomes that performed poorly compared to the RSM and ANN models.
The grid partitioning (genfis1) FIS attained the highest R2 of 0.8988 when the pi MF was
applied and optimised using the backpropagation algorithm. The genfis1 FIS integrates
a uniform grid to model the membership functions which improves the computation of
unstructured data better than genfis2. The pimf outperformed all other MF due to higher
adherence to linear and non-linear variables. This is made possible by its bell-shaped
model, which has a symmetrical centre point that can map the correlation in a dataset with
a complex variable design. The poor performance of the ANFIS models can be ascribed
to overfitting. The performance of the RSM and ML models used to predict the Y1 and Y2
responses are graphically summarised in Figure 1.

The statistical data from the comparison of the forecasted and actual data are presented
in Table 2. These data verify the effectiveness of the ANN in creating models relevant to
the dry FGD process.
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Figure 1. RSM, ANN, and ANFIS synthetic data compared to the actual values of (a) SO2 capture
and (b) sorbent conversion.

Table 2. Error analysis of the RSM, ANN, and ANFIS models.

Analysis Sulphation Efficiency (%) Sorbent Conversion (%)

RSM BR ANFIS RSM BR ANFIS

RMSE 0.833334 0.4633 0.7056 0.68725 0.368223 0.5354
MSE 0.69446 0.2146 0.4979 0.47231 0.135588 0.2867
R2 0.9753 0.9987 0.8988 0.9771 0.9986 0.8927

4. Conclusions

This work was intended to classify the forecasting performance of mathematical
and ML models in low-temperature dry FGD. The results of this study can be applied
in design and operation optimisation in the case of retrofit applications. The intention is
to improve innovation and sustainability significantly by ensuring reduced sorbent feed
and high SO2 removal. Data mapping involved using the RSM quadratic model and deep
learning algorithms in the ANN and ANFIS tools. According to the statistical analysis,
the 5-10-2 ANN layout surpassed the RSM and ANFIS models in computation accuracy
with an R2 of 0.9987 for Y1 and 0.9986 for Y2. This was achieved when simulations were
performed using the BR algorithm. The ANFIS script struggled with model overfitting even
though it achieved high R2 values (Y1—0.8988, Y2—0.8927), which may be related to a lack
of training data needed to accurately train the network. This problem is being investigated
in a future study by evaluating the use of cross-validation, early stopping technique, and
reducing the number of active neurons during training. It is crucial to remember that the
findings of this research depend on the specific experimental setup and data collected. To
verify the robustness and usability of the generated models, future work should seek to
validate these findings using larger datasets and under other experimental situations.
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Abbreviations

ANOVA analysis of variance.
dsigmf difference between two sigmoidal membership functions
gbellmf generalised bell-shaped membership function.
gaussmf gaussian membership function.
logsig sigmoid activation function.
pimf pi-shaped membership function
purelin linear activation function
tansig hyperbolic tangent activation function.
trimf triangular membership function
trapmf trapezoidal membership function
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