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Abstract: Fault detection in multi-rate process systems is a challenging task. Common techniques
used for fault detection include threshold-based detectors, statistical detectors, and machine learning-
based detectors. One such statistical detector technique is multiple probabilistic principal component
analysis (MPPCA). MPPCA uses probabilistic PCA to detect fault signals from multiple sensors
without down-sampling or up-sampling. This paper uses MPPCA to detect faults in a two-phase
reactor–condenser system with recycle (TPRCR) with three measurement classes. These measurement
data are used to build the MPPCA model using expectation maximization (EM). Based on this, T2

and SPE statistics are generated for fault detection in TPRCR systems, and the MPPCA approach’s
effectiveness for fault detection is satisfactory.

Keywords: fault detection; multi-rate process; MPPCA

1. Introduction

Modern chemical industries focus on detecting and diagnosing faults as early as
possible to increase production yield [1]. Effective fault-detection techniques available in
the literature require the regular availability of measurements [1]. However, some variables
in chemical processes are measured online, while other qualitative variables are measured
offline. Measurement of these offline quality variables requires human involvement, which
makes the system an irregularly sampled multi-rate system [2]. Fault-detection techniques
for multi-rate systems include state space estimation techniques and data-based modelling
methods. State space estimation techniques require accurate system models, which are
difficult to model for complex chemical engineering systems. Compared to the above
methods, another data-driven approach uses measurement data to model the system’s
behaviour. These data-driven methods for multi-rate systems require down-sampling,
up-sampling and re-sampling. While the down-sampling approaches will lose essential
information during modelling, the up-sampling methods heavily rely on the correctness
of the predictions [3]. In most chemical processes, the variation in sample rates is too
significant, resulting in unmanageable complexity in the re-sampling models. The MPPCA
method does not require down-sampling, up-sampling and re-sampling of multi-rate data.
It uses multi-rate data to build an inferential model that can handle multiple measurement
classes. The MPPCA method is an extension of probabilistic principal component analysis
(PPCA) which uses the EM algorithm for parameter tuning.

In this study, the effectiveness of the MPPCA method in detecting various faults for
the multi-rate nonlinear chemical process TPRCR is studied, and fault detection is carried
out by using T2 and SPE statistics.
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The remainder of this paper is organised as follows. Section 2 gives details about
the MPPCA method and model parameter estimation. Then, Section 3 details the TPRCR
model. Section 4 implements a fault-detection technique on TPRCR. Finally, conclusions
are made in the last section.

2. MPPCA Method

The MPPCA model combines several-rate data into a single model without down- or
up-sampling. In our article, we have considered the MPPCA model with three different
classes of measurements, and it is given by the following equations:

x1 = ∅1t + ε1 (1)

x2 = ∅2t + ε2 (2)

x3 = ∅3t + ε3 (3)

In Equations (1)–(3), x1 ∈ RK1×M1, x2 ∈ RK2×M2, and x3 ∈ RK3×M3 are three different
rate measurements classes in which x3 is the slowest and x1 is the fastest measurement.
∅1 ∈ RM1×D, ∅2 ∈ RM2×D and ∅3 ∈ RM3×D are loading matrices with three different
sampling rates. t ∈ RD is a latent variable which extracts a restricted link between data with
varied sampling rates and helps develop one single model. The latent variable is assumed
to have a Gaussian distribution with a zero mean and unit variance. ε1 ∈ RM1, ε2 ∈ RM2

and ε3 ∈ RM3 are used to model the corresponding isotropic Gaussian noises.
The sequence of the measurements can be altered for easier notation and visualisation

on the premise that all sample variables are independent. The whole observation (V)
comprises three divisions of the observed data. The first sample contains all observations
with dimensions M1 + M2 + M3 (V3), the following sample variables have dimensions
M1 + M2 (V2), and the last one contains only M1 (V1) variables. As a result, the entire
observation set is expressed as a union of all three.

V = V3 ∪V2 ∪V1 (4)

The EM technique is used to estimate model parameters for the MPPCA model. The
method repeats the expectation step (E-step) and the maximisation step (M-step) until
convergence. In the E-step, the current model parameters are utilised to estimate the
posterior distributions of the latent variables. The model parameters are then adjusted in
the M-step by maximising log likelihood. One reference contains a detailed explanation of
the step of the EM algorithm for MPPCA training [4].

SPE statistics can be used to detect abnormal behaviour in measurements. There are
three different classes of measurements, so three different SPE statistics are used to detect
any anomaly in measurement.

SPE1 = x1 −∅1t (5)

SPE2 = x2 −∅2t (6)

SPE3 = x3 −∅3t (7)

Since each SPE statistic is compiled based on the prediction errors of different classes
of measurements, it clearly shows that a given fault is caused by a certain class of mea-
surements. The confidence bound of SPE statistics can be predicted by χ2-distributed
approximation: SPE~g.χ2

h, in which g and h are the parameters of the χ2 distribution, and
they are given by [5].

gh = mean(SPE) (8)
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2g2h = var(SPE) (9)

3. Two-Phase Reactor–Condenser System with Recycle

The process depicted in Figure 1 includes a two-phase reactor and condenser [6].
Reactants A and B are introduced into the reactor at molar flow rates FA and FB and
temperatures TA and TB, respectively, in the vapour and liquid phases. Reactant A diffuses
into the liquid phase at rate NA1, where an exothermic reaction occurs, which is given by
Equation (10).

A + B→ 2C (10)
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Figure 1. Schematic Diagram of TPRCR system.

Product C diffuses into the vapour phase at a rate Nc1, whereas reactant B is non-
volatile. The interphase mass transfer resistance is assumed to be minimal, and the Ar-
rhenius equation provides the reaction rate in the bulk liquid phase, which is given by
Equation (11).

rA = k10 exp
(
−Ea

RT1

)
Ml

1ρxA1xB1 (11)

where rA is the rate at which reactant A is consumed at temperature T1. The preexponential
factor and activation energy are denoted by k10 and Ea, respectively. Ml

1 is the liquid molar
holdup in the reactor, and ρ is the liquid density. xA1 and xB1 are A and B mole fractions
in the liquid phase. For the sake of simplicity, heat capacity, density, and molar heat of
vaporisation are considered to be constant and equal for all species. The liquid and vapour
phases are suitable combinations. The liquid stream from the reactor is withdrawn at a
constant flow rate F1l, while the vapour stream enters the condenser at a flow rate F1v. The
vapour in the condenser is cooled to T2 to improve product purity by eliminating reactant
A from the liquid.

The reactant A-rich liquid phase in the condenser is returned to the reactor at a flow
rate of F2l, while the product vapour phase departs the condenser at a flow rate of F2v and
a composition of yA2.
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Equations (12)–(29) give a detailed differential algebraic equation (DAE) model used
to train the MPPCA model for data generation.

.
M

l
1 = FB − F1l + F2l + NA1 − NC1 (12)

.
xA1 =

(
1

Ml
1

)
[−FBxA1 + F2l(xA2 − xA1) + NA1(1− xA1) + NC1xA1 − rA] (13)

.
xB1 =

(
1

M1l

)
[FB(1− xB1)− F2l xB1 − NA1xB1 + NC1xB1 − rA (14)

.
M

v
1 = FA − F1v − NA1 + NC1 (15)

.
yA1 =

(
1

Mv
1

)
[FA(1− yA1)− NA1(1− yA1)− NC1yA1] (16)

.
T1 =

(
1

Ml
1+Mv

1

)
[FA(TA − T1) + FB(TB − T1) + F2l(T2 − T1)

+(NA1 − NC1)
∆Hv

CP
− Q1

CP
+ rA

(
−∆Hr

CP

)
]

(17)

.
M

l
2 = NA2 + NC2 − F2l (18)

.
xA2 =

(
1

Ml
2

)
[NA2(1− xA2)− NC2xA2] (19)

.
M

v
2 = F1v − F2v − NA2 − NC2 (20)

.
yA2 =

(
1

Mv
2

)
[F1v(yA1 − yA2)− NA2(1− yA2) + NC2yA2] (21)

.
T2 =

(
1

Ml
2 + Mv

2

)
[F1v(T1 − T2) + (NA2 + NC2)

∆Hv

Cp
− Q2

CP
] (22)

0 = NA1 − kAa(yA1 − y∗A1)
Ml

1
ρ

(23)

0 = NC1 − kCa(y∗c1 − (1− yA1))
Ml

1
ρ

(24)

0 = NA2 − kAa(yA2 − y∗A2)
Ml

2
ρ

(25)

0 = NC2 − kCa ∗ (1− yA2 − y∗C2)
Ml

2
ρ

(26)

0 = P1

(
V1T −

Ml
1

ρ

)
−Mv

1 RT1 (27)

0 = P2

(
V2T −

Ml
2

ρ

)
−Mv

2 RT2 (28)

0 = P1 − P2 −
1

0.09
(F1v)

7
4 (29)
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The system parameter values are given in Table 1.

Table 1. TPRCR system parameter.

Parameter Description Value Unit

a Interfacial mass transfer area/unit liquid holdup 1000 m2/m3

Cp Molar heat capacity 80 J/mol K
Ea Activation energy 110 kJ/mol
K Proportional gain of pressure controller −8 mol/s atm

K10 Preexponential factor 2.88 × 1011 m3/mol s
ka Overall mass transfer coefficient for A 0.2 mol/m2 s
kc Overall mass transfer coefficient for C 0.8 mol/m2 s

M1
l Liquid molar holdup in reactor 14.52 kmol

M2
l Liquid molar holdup in condenser 15 kmol

M1
v Vapour molar holdup in reactor 3.75 kmol

M2
v Vapour molar holdup in condenser 3.90 Kmol

P1 Pressure in reactor 50 atm
P2 Pressure in condenser 48.69 atm
P* Set point for reactor pressure 50 atm
TA Temperature of feed A 315 K
TB Temperature of feed B 300 K
T1 Temperature in reactor 330 K
T2 Temperature in condenser 304.16 K

V1T Volume of reactor 3 m3

V2T Volume of condenser 3 m3

ρ Liquid molar density 15,000 mol/m3

∆Hr Heat of reaction −50 kJ/mol
∆Hv Heat of vaporization 10 kJ/mol

4. Fault Detection Using MPPCA for the TPRCR System

Three types of measurements are used to train the MPPCA model. Fast-rate measure-
ments include temperature, pressure, and flow rates available every second (x1). Medium-
rate measurements include molar holdups available every fifteen seconds (x2), and slow-
rate measurements include mole fractions available every sixty seconds (x3).

The MPPCA model is trained with 7200 samples of fast-rate measurements, 480 samples
of medium-rate measurements, and 120 samples of slow-rate observations. The fault
identification capability of the MPPCA approach is assessed using the six categories of
faults indicated in Table 2.

Table 2. Fault description in the TRPCR system.

Fault No. Fault Type Fault Introduced (s)

1 Step jump in flow rate of A (FA) 2400
2 Step jump in flow rate of B (FB) 2400
3 Step jump in temperature of A (TA) 2400
4 Step jump in temperature of B (TB) 2400
5 Ramp jump in flow rate of A (0.0004 × t) 2400
6 Ramp jump in temperature of A (0.003 × t) 2400

For a fair comparison, all detection models in this work have a level of significance of
0.99 for the SPE and T2 statistics. Table 3 shows the false alarm rates for normal data and
the missing detection rates for faults, where Fault 0 represents normal test data and that
the monitoring results are false alarm rates. The false alarm rate is the fraction of normal
data that is interpreted as problem data. Similarly, the missing detection rate is the fraction
of the defect data that are treated as normal data. Table 3 shows the monitoring results of
all faults using T2 and different SPE statistics for the MPPCA model.
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Table 3. Fault monitoring results using T2 and SPE statistics.

Fault No T2 SPE1 SPE2 SPE3

0 0.021 0.001 0.004 0.0001
1 0.035 0.023 0.09 0.008
2 0.067 0.065 0.011 0.034
3 0.001 0.001 0.001 0.001
4 0.854 0.673 0.765 0.231
5 0.313 0.452 0.023 0.045
6 0.201 0.121 0.111 0.201

Three different SPE statistics are used to see which fault will have an effect on which
SPE statistic. Figure 2 shows SPE statistics for the fault in flow rate of A (FA), which suggests
that this fault affects all three SPE statistics.
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5. Conclusions

In this paper, the TPRCR system is modelled as a multi-rate system due to the involve-
ment of qualitative variables, including three different classes of measurements. These
measurements are used to develop the MPPCA model using the EM algorithm. This de-
veloped MPPCA model is used to detect faults by developing T2 and three different SPE
statistics for each measurement class. Six different types of faults are used to check the
effectiveness of the developed MPPCA model, and, from the monitoring results, we can
clearly say that the MPPCA model can detect faults with a high detection rate.
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