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Abstract: The agri-food industry generates tons of waste rich in dietary fiber, a nutrient that can be
recovered to be reused in the development of fiber-enriched foods and beverages. This could be a
strategy to achieve resource-use efficiency and to promote adequate intakes of this nutrient, since
a large part of the world population does not get the recommended daily amount. In this sense,
this work was carried out to optimize the extraction of dietary fiber from quince (Cydonia oblonga
Mill.) peel, using the response surface methodology. A 20-run experimental design was implemented,
combining the factors time, temperature, and ethanol percentage at five levels. The yield of fibrous
residue (FR) and its dietary fiber content and color parameters were used as dependent variables. The
developed predictive models were statistically validated and used to determine optimal extraction
conditions. The process was significantly affected by temperature and ethanol percentage, and the
highest dietary fiber content (67% of FR) was obtained using 36% ethanol at 92 ◦C. Overall, these
results showed that C. oblonga fruit peel could be upcycled into dietary fiber-rich food ingredients.

Keywords: food waste; extraction optimization; dietary fiber; response surface methodology

1. Introduction

The agri-food sector is under pressure to move towards more sustainable production
systems that are capable of providing high-quality food to a growing world population
facing climate change and resource scarcity. This sector generates million tons of plant waste
and by-products rich in dietary fiber, a non-starch polysaccharide that could be recovered
and recycled inside the food chain as a food ingredient [1,2]. This could be a strategy to
achieve circularity and resource efficiency and to promote adequate intakes of dietary fiber,
since a considerable part of the world population does not get the recommended daily
amount (25 g/day) [3]. Dietary fiber is a “nutrient of public health concern” that plays an
important role in protecting against cardiovascular disease, type 2 diabetes, and certain
cancers and in improving gastrointestinal health and body weight control [4,5]. Nowadays,
new food products enriched in dietary fiber have been developed to meet the growing
demands of health-conscious consumers [6,7]. Food products added with certain fibers can
also have improved structural properties. Therefore, there is a need to identify sustainable
raw materials rich in dietary fiber, mainly agri-food by-products.

Quince (Cydonia oblonga Mill.) is an astringent fruit used to produce sweet foods and
drinks such as jam, marmalade, and liquor. Although its peel is usually discarded during
the manufacture of these products, some studies have highlighted the potential of this
by-product as a source of compounds with nutritional and technological value such as
dietary fiber (including pectins) [8–10]. Thus, this work was conducted to optimize the
recovery of dietary fiber from the C. oblonga fruit peel by dynamic maceration, using a
three-factor experimental design coupled with response surface methodology (RSM).
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2. Material and Methods

Cydonia oblonga fruit peel kindly provided by producers in Northeastern Portugal
was freeze-dried, ground into a 20-mesh particle size powder sample, and then subjected
to solid–liquid extractions by dynamic maceration. Five levels of time (t, 1–119 min),
temperature (T, 26–94 ◦C), and ethanol percentage (E, 0–100%, v/v) were selected based on
previous studies [11,12] and combined according to the 20-run central composite rotatable
design shown in Table 1. The extractions were made in closed flasks, using a solid/liquid
ratio of 60 g/L in all runs. Each extractive mixture was then centrifuged, and the fibrous
residue (FR) was collected and oven-dried until constant weight for further analysis.

Table 1. Yield, dietary fiber content, and color of the FR samples obtained from C. oblonga fruit peel
by dynamic maceration under the 20 runs of the experimental design.

Run Experimental Domain Experimental Results

t (min) T (◦C) E (%) FR (%, w/w) DF (% FR) L* RGB *
1 −1 (25) −1 (40) −1 (20) 43.66 57.84 59.66
2 1 (95) −1 (40) −1 (20) 43.08 56.78 56.75
3 −1 (25) 1 (80) −1 (20) 42.11 64.44 37.24
4 1 (95) 1 (80) −1 (20) 46.76 62.65 35.62
5 −1 (25) −1 (40) 1 (80) 51.90 57.27 55.88
6 1 (95) −1 (40) 1 (80) 51.59 58.66 56.02
7 −1 (25) 1 (80) 1 (80) 49.41 57.73 59.51
8 1 (95) 1 (80) 1 (80) 52.70 57.53 58.60
9 1 (−1.68) 0 (60) 0 (50) 51.64 57.21 58.35
10 119 (1.68) 0 (60) 0 (50) 50.25 58.64 56.80
11 0 (60) −1.68 (26) 0 (50) 39.82 59.83 51.76
12 0 (60) 1.68 (94) 0 (50) 40.81 65.55 34.09
13 0 (60) 0 (60) −1.68 (0) 49.18 55.33 55.90
14 0 (60) 0 (60) 1.68 (100) 65.53 52.46 70.62
15 0 (60) 0 (60) 0 (50) 50.31 59.95 54.21
16 0 (60) 0 (60) 0 (50) 48.18 58.11 56.62
17 0 (60) 0 (60) 0 (50) 46.68 59.35 56.42
18 0 (60) 0 (60) 0 (50) 48.27 57.86 57.30
19 0 (60) 0 (60) 0 (50) 50.54 57.94 58.92
20 0 (60) 0 (60) 0 (50) 47.97 60.48 58.33

Process factors: t—time; T—temperature; E—ethanol percentage; FR—fibrous residue; DF—dietary fiber;
L*—lightness; RGB—red/green/blue color model. * Color representation of each FR sample.

The FR yield (%, w/w) was determined by a gravimetric method [13]. The dietary
fiber (DF) content of the FR samples was determined by an enzymatic–gravimetric method
(AOAC 985.29) involving gelatinization with heat-stable α-amylase (pH 6.0, 15 min at
95 ◦C) and digestion with protease (pH 7.5, 30 min at 60 ◦C) and amyloglucosidase (pH 4.5,
30 min at 60 ◦C) [14]. The dietary fiber content (% FR) was determined after discounting the
measured protein (AOAC 920.152) and ash (AOAC 940.26) contents [14]. The CIELAB color
parameters (L*, lightness; a*, redness; and b*, yellowness) of the FR samples were measured
with a portable CR-400 colorimeter (Konica Minolta Sensing Inc., Osaka, Japan) [13] and
then converted to RGB (red, green, and blue) to create a color model for visual perception.

For optimization of the dynamic maceration process by RSM, the FR yield, dietary fiber
content, and lightness were used as dependent variables; the three factors were set within
the experimental domain, and the “maximize” option was selected for each dependent
variable. Design-Expert software 11 (Stat-Ease, Inc., Minneapolis, MN, USA) was used to
estimate the model coefficients and assess their significance at a 95% confidence level, as
well as to generate the response surface plots.
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3. Results

The FR yields and their dietary fiber content and color parameters obtained with
the 20 runs of the experimental design are shown in Table 1. The FR yield ranged from
39.82 to 65.53% (w/w) with the runs 11 and 14, respectively, and these FR samples were
constituted by 52.46 to 65.55% of dietary fiber. Runs 12 (involving the highest temperature)
and 14 (involving the highest ethanol percentage) resulted in the highest and lowest levels
of dietary fiber and also the darkest and lightest FR samples, respectively. The redness
(7.2 ± 0.7) and yellowness (20 ± 3) of the FR samples did not vary much with the 20 runs
(data not shown).

Predictive model equations were developed to translate the effects of the three factors
on the dependent variables FR yield, dietary fiber content, and lightness, considering the
significant parameters (p < 0.05) and those necessary for the hierarchy. These models were
statistically significant (p < 0.001), had a non-significant lack of fit (p > 0.345), and R2 and
adjusted R2 values greater than 0.909 and 0.877, respectively. Each parametric value of the
equation models translated a certain change in the outcome as a function of its magnitude.
The extraction trends for each dependent variable are represented on the response surface
plots in Figure 1. The unplotted factor on each 3D plot was kept at its optimum.

Equation (1) shows that the FR yield was highly influenced by the ethanol percentage,
as this factor induced marked linear and quadratic effects and interacted with time. The 3D
graphs in Figure 1a show that the higher yield was promoted by higher ethanol percentages.
In turn, temperature mainly induced a negative quadratic effect. Thus, the extraction of C.
oblonga fruit peel powder for 69 min with 100% ethanol at 61 ◦C led to the highest FR yield
of 64 ± 2% (w/w).

YFR = 49.05 + 0.35t + 0.18T + 4.21E − 3.40T2 + 3.63E2 + 1.10tE (1)
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Figure 1. Response surface plots illustrating the effects of the three factors on (a) yield, (b) dietary
fiber (DF) content, and (c) lightness of the FR samples obtained from C. oblonga fruit peel by dynamic
maceration. In each representation, the unplotted factor was kept constant at its optimum value.

Equation (2) translates extraction trends for dietary fiber. The recovery of these C.
oblonga fruit peel constituents was affected by the positive effects of temperature and
negative effects of ethanol percentage. Furthermore, these factors interacted negatively.
Thus, as shown in Figure 1b, the FR samples with higher levels of dietary fiber were
obtained using higher temperatures and lower ethanol percentages. The non-significant
effects (p > 0.05) of processing time are also noted on the response surfaces. According
to the predictive model, FR samples with 67 ± 1% of dietary fiber can be obtained by
extraction at 92 ◦C with 35% ethanol. For time, there was no specific optimal value to
maximize the process.

YDF = 58.79 + 1.57T − 1.12E + 1.55T2 − 1.56E2 − 1.64TE (2)

When dietary fiber is added to foods for fortification purposes, the visual appearance
of the developed food products should not be negatively affected by the fiber color of
this nutrient. Therefore, the impact of the extractions on the color of the FR samples
was measured, and lightness was the parameter that varied the most. As translated by
Equation (3), the parametric values obtained for this dependent variable had an opposite
sign to those of Equation (2) for dietary fiber, i.e., the parametric values of temperature were
negative, and those of ethanol percentage were positive, as well as that of the interaction
effect. Hence, while the higher-yielding FR samples tended to be lighter, the higher-fiber
FC samples were darker.

YL* = 56.86 − 4.91T + 4.80E − 5.37T2 + 1.82E2 + 6.22TE (3)

The results of this study are consistent with those of Afifi et al. [15], who obtained an
FR sample with 79.4% dietary fiber from date seeds and found a decrease in fiber contents
with an increasing ethanol percentage. In turn, Al-Farsi and Lee [16] achieved 83.5% fiber in
a date seed FR sample with an aqueous extraction. These authors highlighted the potential
of date seeds as an inexpensive source of dietary fiber for application as a food ingredient.

4. Conclusions

Dietary fiber-rich FR samples were obtained from the fruit peel of C. oblonga through
an optimized dynamic maceration process. Lower-yielding FR samples tended to contain
higher dietary fiber percentages and be darker. The optimized maceration involved 92 ◦C
and 36% ethanol as solvent and yielded 67% of dietary fiber, while the time factor was not
significant. These results are the first step towards a large-scale implementation process,
and the natural ingredient resulting from the valorization of this underutilized raw material
can be used in the fortification of foods and drinks and in nutraceutical formulations.
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