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Abstract: Magnetic carbon xerogels were synthesized via direct sonication to load magnetite nanopar-
ticles in sol–gel polycondensation onto resorcinol-formaldehyde gels. The resulting organic gels
were carbonized and subjected to surface modification using H2O2 and characterized using scanning
electron microscopy and energy-dispersive X-ray spectroscopy. The desorption capacity was opti-
mized using response surface methodology, with the adsorbent dose identified as the most significant
quantitative factor. The kinetic adsorption was well described using the Elovich and Power equa-
tions. The regeneration capacity was evaluated over four sequential adsorption–desorption cycles,
demonstrating the possibility of reusing the adsorbent and reducing the environmental impact.

Keywords: adsorption–desorption; arsenic; kinetic model; response surface methodology

1. Introduction

The presence of arsenic in the aquatic environment has caused significant exposure
and health problems in many countries worldwide [1,2]. Adsorption is considered an
effective technology for removing arsenic from water and wastewater treatment [3], but
investigating various factors that influence the desorption and the reuse of adsorbents is
necessary to develop an economically and environmentally acceptable approach.

Numerous methods for preparing magnetite nanoparticles have been reported, with
conventional co-precipitation using the Fe3+/Fe2+ molar ratio established by the reaction
stoichiometry being considered a simple, cheap, and high-yield method, with control over
nanoparticle distribution and low-temperature requirements [4].

Gels possess a unique structure of large interconnected pores, mechanical and chemical
stability, and feasibility for control and design according to variations in the synthesis
and processing conditions. Mesoporous gels and carbon xerogels have been studied for
water treatment processes, with success in removing toxic organic compounds [5], organic
dyes [6], and heavy metals [7–10].

This study evaluated the desorption capacity of magnetic carbon xerogels and their
potential for regeneration. The optimal condition for the arsenate desorption process was
studied using a response surface methodology (RSM). Additionally, the kinetics of arsenic
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adsorption and desorption were investigated with various models. Finally, the regenerative
capacity of the magnetic carbon xerogels were determined to carry out the sequential
adsorption–desorption.

2. Methods
2.1. Synthesis of Magnetic Carbon Xerogels

Magnetic xerogels were synthesized via sol–gel polymerization of resorcinol (R),
formaldehyde (F), water (W), and magnetite nanoparticles (M) using sodium carbonate (C)
as a catalyst. The molar ratios were M/R = 0.07, R/C = 100, R/W = 0.04, and R/F = 0.5. For
full details on the synthesis procedure of magnetic xerogels, please refer to [11].

2.2. The Effect of Carbonization Temperatures to Obtain the Optimum Conditions

The effect of carbonization temperatures ranging from 600 ◦C to 850 ◦C were inves-
tigated to determine the optimum condition for preparing magnetic carbon. A tubular
furnace was used for carbonization with a 50 mm alumina tube (GSL-1600X-50-UL; MTI
Corporation, Richmond, CA, USA).

The XMC10 sample was carbonized using a heating ramp of 2 ◦C/min and nitrogen
flow of 100 mL/min at a pyrolysis temperature of 600 ◦C for 6 h, resulting in the XMC10-600
sample. Additionally, some samples were pyrolyzed at 350 ◦C for 1 h and 850 ◦C for 2 h
with a constant heating rate of 10 ◦C/min and nitrogen flow of 100 mL/min, resulting in
the MCXM850 sample. Surface modification using H2O2 was applied to enhance metal
binding on the surface [12], resulting in the XMC10-600M and MCXM850M samples.

2.3. Characterization of Materials

The surface morphology and porous structure of the magnetic carbon xerogels were
analyzed using a scanning electron microscope (SEM) with analytical systems of energy-
dispersive X-ray spectroscopy (EDS) (Bruker) on an FE-SEM (7800F Prime; JEOL, Peabody,
MA, USA).

2.4. The Kinetics of Arsenic Adsorption

The experimental adsorption data for the kinetic study were obtained by varying
the contact time at intervals of 3, 6, 10, 30, 60, 120, 240, 360, 1200, 1320, and 1440 min.
The magnetic xerogel carbons used for comparison were XMC10-600M and XMC10-850M,
which were pyrolyzed at 600 ◦C and 850 ◦C, respectively.

2.5. The Optimal Condition for the Arsenate Desorption Process Using an RSM

The optimal conditions for arsenate desorption were determined using RSM. Three
variables were considered: desorbing concentration, adsorbent dose, and agitation speed,
with low, medium, and high levels for each variable (as shown in Table 1). Two center
points were also included. The experimental design and data analysis were carried out
using R statistical software version 4.0.3.

Table 1. Configuration of variables for implementation of the RSM method to optimize arsenic
adsorption.

Factors Coding
Factors

Low
(−1)

Center
(0)

High
(1)

Concentration of KOH solution (M) x1 0.5 1 1.5
Orbital shaker speed (rpm) x2 80 120 160
Spent adsorbent dose (g/L) x3 0.4 1.2 2

2.6. Arsenic Adsorbent Regeneration

The experiment to regenerate the arsenic adsorbent was carried out using XMC10-
850M that was previously loaded with arsenic, as obtained from the kinetic adsorption
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study under conditions of pH 3.0, contact time of 1440 min, and initial concentration of
arsenic solution of 1.024 mg/L. The concentration of arsenic was determined using an
inductively coupled plasma optical emission spectrometer (ICP-OES), model OPTIMA 8300.

3. Results and Discussion

Magnetic xerogel carbon composites loaded with magnetite nanoparticles were ob-
tained to evaluate the effect of carbonization temperatures between 600 ◦C and 850 ◦C.

3.1. Characterization of Magnetic Carbon Xerogels

Figure 1 depicts the surface morphology and pore structure of the magnetic carbon
xerogels analyzed through SEM. XMC10-600M and XMC10-850M were synthesized with
R/W = 0.04, R/C = 100, and M/R = 0.07 at carbonization temperatures of 600 ◦C and 850 ◦C,
respectively. Both xerogels exhibited similar microstructures that are homogeneous and
composed of fine particles. The xerogel structure consists of a continuous solid skeleton,
which is composed of chains of monomer particles arranged in a string of pearl-like 3D
networks. The SEM images of XMC10-600M and XMC10-850M showed that the magnetite
nanoparticles were evenly distributed across the RF gels and adhered to the RF gel surface.
The corresponding EDS analysis in Figure 2 confirmed that the magnetic carbon xerogels
XMC10-600 and XMC10-850, after they had adsorbed the arsenic, were composed of
elements C, O, Al, Si, Fe, and As. The presence of Fe in the RF gels was also confirmed by
an atomic absorption spectrometer, with an Fe content of 3.56% by weight. However, the
magnetic nature of the magnetite during the sonication process on the synthesis of xerogels
resulted in some parts of the RF gel showing agglomeration of magnetite nanoparticles [13].
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Figure 2. EDS spectrum of magnetic carbon xerogels (a) XMC10-600M and (b) XMC10-850M after
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3.2. The Kinetics of Arsenic Adsorption

The kinetic adsorption data of arsenate were plotted as the amount of arsenate ad-
sorbed per unit weight of xerogel carbon (qt, mg/g) versus time (min). Nonlinear equa-
tions were used to analyze the data, which are presented in Figure 3. The adsorption
kinetics of XMC10-600M and XMC10-850M were evaluated using pseudo-first order (PFO),
pseudo-second order (PSO), Elovich, and Power models. The kinetic parameters were then
calculated. The kinetics of both Elovich and Power models present a correlation coefficient
greater than 0.90 for XMC10-850M.
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Figure 3. Adsorption kinetics of arsenate using magnetic xerogel carbons at carbonization temper-
atures of (a) 600 ◦C and (b) 850 ◦C (condition: adsorbent dosages of 2 g/L, pH of 3.0, and initial
concentration of arsenic solution of 1.024 mg/L).

3.3. The Optimal Condition for the Arsenate Desorption Process Using an RSM

The RSM was utilized to develop a model for optimizing arsenic desorption by ana-
lyzing the effects of various factor combinations through a novel linear model approach.
The R v4.0.3 software was used to obtain the results of a second-degree polynomial model,
where the variables x1 (KOH concentration), x2 (Agitation speed), and x3 (Adsorbent dose)
were encoded. The resulting second-degree model is

As desorption = 49.07 + 2.4x1 + 3.78x2 + 29.37x3 − 2.54x1x2 + 3.84x1x3 + 4.98x2x3 − 8.9x2
1 + 11.04x2

2 − 3.17x2
3 (1)

Figure 4a demonstrates the behavior of arsenic desorption with respect to the variables
considered, using the stationary points in their original units, namely, a concentration (conc)
of 1.64, a speed of 77.79, and a dose of 4.85. It can be observed that as the agitation speed
and the concentration of the desorbing agent increase, the arsenic desorption of the material
improves. Figure 4b shows a 3D representation of the behavior of the arsenic desorption
percentage as a function of desorbing agent concentration (KOH) versus adsorbent dose,
with an agitation value of 77.79 rpm as the estimated stationary point, which was obtained
by implementing the methodology of response surface. It can be seen that the variable x3
(dose) has a significant influence on the response variable, arsenic desorption, as indicated
by the higher number of asterisks. Moreover, the p-value of the model is significant as it is
less than 0.05.
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3.4. Arsenic Adsorbent Regeneration

Regarding the results of the experimental design using RSM, the optimal conditions
for the regeneration process were found to be 1.0 M KOH, 150 rpm, with a dose of 2 g/L,
and a contact time of 180 min. It can be observed from Figure 5 that the removal efficiency
of arsenic adsorption decreased from cycle 1 to cycle 4, by approximately 7.83%, and
remained at 88.19% at cycle 4. The percentage of arsenic desorption achieved during cycle
1 was 82.75%, but after desorption in cycle 2–4, the percentage of desorption was only
66.16–58.22%, decreasing by around 26.59% from cycle 1 to cycle 4. From the desorption
experiment, it can be concluded that XMC10-850M can recover arsenic and be reused for
more than four cycles with the arsenic adsorption remaining over 88.19%, without requiring
any treatment, and thus ensuring environmental sustainability.
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4. Conclusions

The use of magnetite nanoparticles, organic gel pyrolysis, and surface modification
with H2O2 had a significant impact on the morphology and surface chemistry of magnetic
carbon xerogels, which resulted in improved adsorption capacity for arsenic. The mag-
netite nanocrystals, which are dispersed throughout the carbon xerogels in a crosslinked
nanostructure, were found to range in size from 15 to 20 nm. Furthermore, the pyrolysis
treatment at 850 ◦C improved the material’s texture, increasing its porosity and decreasing
particle size. By utilizing a response surface methodology to investigate optimal conditions
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for the magnetic xerogels in the desorption process, their maximum desorption capacity
can be determined, and there is a possibility of regeneration in an aqueous solution.
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