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Abstract: Most wine fermentations are completed in successive batches during a 2 month harvest
period. Red wine fermentations are usually completed in 10 to 14 days, while white wine fermenta-
tions are completed in 21 to 24 days. The demand for resources—equipment, water, energy, labor,
etc.—in a short time motivates the precise, automated control of the fermentation process. While
the effects of temperature on wine chemistry are well studied, few advanced control strategies have
been developed for the precise control of temperature for wine chemistry research. In this study,
a nonlinear model predictive controller (NMPC) was developed to determine the temperature to
achieve the desired fermentation rate. The controller was combined with a pulse cooling and heating
strategy to improve the energy efficiency of temperature control. The feasibility of this approach is
demonstrated by simulations and experiments in 15 L fermentations.

Keywords: wine fermentation; model predictive control

1. Introduction

In the production of wine, the entire primary fermentation processing step is per-
formed within 1 to 3 months after grapes are harvested, depending on the type of wine
produced. The demand for resources—equipment, water, energy, labor, etc.—in a short
time period motivates the precise control of the fermentation process. While much re-
search has been performed to evaluate the effect of the fermentation temperature on wine
chemistry [1–6], in this paper, the effect of specific fermentation kinetics on the resulting
wine characteristics and the reproduction of the results at commercial volumes with a
robust control strategy is investigated. To our knowledge, there is only one example of
wine fermentation with a controlled fermentation rate, performed by Saller [7] in 1958.
In [7], the fermentation rate of a 1500 L white juice fermentation was controlled to 1 ◦Brix
per day (which is 4◦ Öschle per day, as reported [7]). An external heat exchanger was
used to quickly change the temperature of the juice. Around the end of the lag phase, a
large input of energy was needed to cool the fermentation down to 2 ◦C. After around
10 days, the temperature was increased up to 14 ◦C. A subsequent evaluation by a wine
kinetic model [8] indicated the Saller fermentation had a very high viability and a low
specific maintenance rate. The duration of fermentation was 30 days. In the commercial
production of wine today, a fermentation time of 30 days is considered atypically long
and will limit the ability to reuse fermentors as more grapes are harvested. Additionally,
the use of temperatures down to 2 ◦C requires very cold refrigerant, making the energy
usage and associated costs high. In this work, a fermentation rate of 2.5 ◦Brix per day was
chosen to increase the minimum temperature and allow the fermentation to complete in
approximately 10 days.
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In general, the control and optimization of wine fermentation is a challenge because
of the nonlinear process control needed, incomplete descriptions by first principle models
and the ability to measure important parameters’ reliability with online sensors. Nonlinear
model predictive control (NMPC) is a control strategy that uses a mathematical model to
predict the future response of the system to different control actions and find the control
action that minimizes an object function. NMPC has been applied to multiple different
fermentation processes including fed-batch penicillin production [9], fed-bactch production
of Escherichia coli [10], fed-batch Chinese hamster ovary mammalian cell production [11],
cultivation of hybridoma cells for production of monoclonal antibodies [12], fed-batch
Saccharomyces cerevisiae for the production of ethanol [13] and continuous ethanol produc-
tion fermentation using Zymomonas mobilis [14]. In this work, NMPC is developed for the
fermentation of wine and demonstrated in a 15 L fermentor.

2. Materials and Methods
2.1. Fermentation Setup

A diagram of the fermentation setup is shown in Figure 1.
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Figure 1. Fermentation setup diagram.

An immersion heat exchanger (40474, Northern Brewer, Roseville, MN, USA) was
immersed in a 25 L bucket and connected to four valves (BZW-15-24VAC, Electric Solenoid
Valves, Islandia, NY, USA). Either hot or cold water is supplied to the heat exchanger and
returned to the water loop. The hot and cold water supply was measured throughout the
experiment and on average was about 50 ◦C and 5 ◦C, respectively. The density, measured
as ◦Brix, was measured with a differential pressure method, as described in previous
work [15]. A platinum electrode 120 mm Arc oxidation-reduction potential (ORP) probe
(Hamilton Company, Reno, NV, USA) was inserted in the center of the bucket. The ORP
probe contained a thermistor for the measurement of temperature. Continuous mixing was
provided with a speed controlled propeller (ADI 1012, Applikon Biotechnology, Foster City,
CA, USA) set to 120 revolutions per minute to provide adequate mixing in the tank. The
propeller had to be offset from the center to accomodate the sensors and heat exchanger.

2.2. Nonlinear Model Predictive Control

Figure 2 shows the nonlinear model predictive control strategy. All measurements
were stored in a database (PI, OSIsoft, San Leandro, CA, USA). The timestep used was
30 min with a prediction horizon of 30 min. Every 30 min, the new and previous measure-
ments of density and temperature were used to estimate the parameters of a wine kinetic
model. The updated parameters were inputed into an optimization block.
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Figure 2. NMPC block diagram.

In the optimization block, the temperature that minimizes the mean squared error
(MSE) between the predicted and desired density is found and used as the setpoint through-
out the 30 min time horizon.

2.3. Wine Kinetic Model and Parameter Estimation

The Boulton model [8] describes the kinetics of juice to wine based on commonly
used wine yeast strains of Saccharomyces Cerevisiae. In this work, the Boulton model
used was modified for an assimilable nitrogen term in the yeast growth rate and to accept
measurements of temperature. The modeling and parameter estimation is further described
in [16].

2.4. Pulse Temperature Control

A bang-bang controller was used to control the fermentation temperature to the set-
point determined by NMPC. Every 120 s, the controller compared the current temperature
of the juice to the setpoint and opened the appropriate hot or cold valves for 20 s. This
bang-bang controller demonstrates a simple pulse cooling and heating strategy, since an off
time of 100 s is guaranteed to allow the heat to transfer between the hot or cold water and
the juice through the immersion heat exchanger. The energy savings of pulse cooling and
heating to the control of temperature in jacketed fermentors in commercial winemaking is
significant (Robert Coleman, private communications).

2.5. Wine Fermentations

White grape concentrate was diluted to 15 L of 24 ◦Brix juice. An amount of 100 mg/L
of juice mineral nutrients (Thiazote pH, Laffort, Petaluma, CA, USA) was added to ensure
no vitamin deficiencies were present. Yeast rehydration nutrients (250 g/mL) (GO-Ferm,
Scott Laboratories Inc., Petaluma, CA, USA) were added to 250 g/mL of yeast (EC-1118,
Lalvin, France). After the yeast was rehydrated according to the manufacturer’s recommen-
dation, the yeast mixture was added to the fermentation. Three control fermentations with
constant temperatures of 21 ◦C, 23 ◦C and 25 ◦C were performed. The temperature control
was started 60 h after inoculation. After the three control fermentations, one fermentation
was performed with the NMPC strategy. The desired fermentation rate was set to 2.5 Brix
per day with a lag of 20 h.

3. Results

Figure 3A,B shows the measured ◦Brix, temperature and ORP for a constant tempera-
ture fermentation, while Figure 3C,D shows the ◦Brix, temperature and ORP for the MPC
fermentation. Due to an equipment failure, measurements from the NMPC fermentation
were only collected from 24 to 9 ◦Brix.
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Figure 3. The measured ◦Brix and temperature (A) and ORP (B) at 21 ◦C (blue) 23 ◦C (red) and 25 ◦C
(black). The measured ◦Brix, temperature and ORP for the MPC fermentation are shown in (C,D).
The dashed purple line in A and C indicate the desired linear ◦Brix.

From the ◦Brix measurements in Figure 3A, fermentations with constant temperatures
show the sigmoidal shape characteristic of wine fermentations, while Figure 3C shows
a linear fermentation rate from 24 to 9 ◦Brix, demonstrating clearly the extent the NKB
(Nelson–Knoesen–Boulton) NMPC can control the fermentation kinetics.

4. Discussion

An important feature of any process control strategy in winemaking is the ability to
adjust to differences between fermentations. Due to the large variation in initial chemical
compositions of grapes and juices, the behavior of fermentations is unpredictable and
variable. The NKB NPMC strategy demonstrated in this work is based on real-time mea-
surements of density and temperature and is applicable to both research and commercial
scale fermentations.

The ability to control fermentation rates will be an integral part in the management of
stuck and sluggish fermentations and energy for refrigeration. Real-time measurements
and modeling can be used to diagnosis fermentations that are not predicted to finish,
switching temperature control to an NPMC to periodically select a temperature that ensures
a complete fermentation. Additionally, since the fermentation rate is directly proportional to
the heat release, control of the fermentation rate enables the optimal shifting of refrigeration
loads across concurrent fermentations in a winery. Extending the NKB NPMC to an
economic NPMC (ENMPC), the controller would also consider the current electricity rates,
enabling economic optimization in the management of fermentation temperature within
the constraints determined by a winemaker. Combined with pulse cooling and heating,
ENMPC has the potential to lead to significant economic savings in wine fermentations.

As a secondary result of this study, the ORP was measured in all fermentations.
ORP has been used in previous work to characterize vineyard site differences in Pinot
noir fermentations [17] and as an indicator of microbial activity and the prevention of
H2S [15]. The control of ORP has also been shown to accelerate the tailing section of some
fermentations [18], making ORP an important variable to consider in the control of the
fermentation rate. Additionally, the rate of decline and magnitude of the minimum point
of ORP has been shown to be a function of temperature in isothermal fermentations [19].
Future development and application of mathematical models describing fermentation
kinetics may be important to include ORP as a variable that captures both yeast activity
and differences in juice composition.
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5. Conclusions

A nonlinear model predictive control (NMPC) strategy to select the temperature
setpoint that linearizes the rate of wine fermentation to 2.5 ◦Brix per day was developed and
validated in a 15 L fermentation from 24 to 9 ◦Brix. The NMPC strategy used measurements
of density and temperature to find the temperature setpoint that minimized the mean
squared error between the predicted and desired density. Future work can demonstrate
this at commercial volumes and incorporate economic models to enable the management
of winery refrigeration loads.
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