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Abstract: Despite topical research, the study of flotation systems remains complex, multifaceted
and water-intensive. Numerous physical and chemical factors are involved in the recovery of
valuable minerals by flotation. While the chemistry of a system can be manipulated to improve the
performance, the system is limited by the mineralogy of the incoming ore and the quality of the
process water, which in most cases is not controlled. Recycling of onsite process water has become the
norm for many operations; this recycling changes the water quality over time and may compromise
the flotation process. This study seeks to understand the impact of ore feed grade on froth stability,
entrainment, and flotation performance under varying water quality. The overarching aim is the
development of a relationship through which the flotation performance may be predicted if the ore
feed grade and water quality are known.
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1. Introduction
1.1. Background

Mining operations cannot operate without continuous access to water, the majority of
which is utilized by mineral processing and dust suppression. The need to find alternative
sources of water that meet operational demands has forced many mining operations to
recycle onsite process water. This recycling may be key to engineering design; however,
it may compromise the flotation process and the efficiency of the flotation performance.
A fundamental understanding of mineral processing is thus paramount to maximize the
recovery of valuable minerals.

1.2. Mineralogy

The mineralogy of an ore determines its flotation performance, thereby making the
mineralogy of the incoming ore paramount for achieving high process performance and
concentrates. Different ores bear different minerals and thus behave differently in the
presence of chemical reactants, making it difficult to isolate and quantify individual reagent
interactions with minerals in the ore [1]. Although limited by surface liberation and particle
size, a synthetic ore allows for the isolation of distinct mineral behavior and can thus
be used for the purpose of investigating the impact of the ore feed grade on flotation
performance under varying water quality.

1.3. Froth Flotation

Froth flotation is a physico-chemical separation process extensively used in mineral
processing for separating minerals to concentrate them for economic smelting. The process
utilizes the differences in surface properties of minerals to selectively separate valuable
minerals from unwanted gangue [2].
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Chemical reagents are added to a milled ore slurry to facilitate separation and enhance
the difference in hydrophobicity between unwanted gangue and valuable minerals [3–6].
A typical reagent suite consists of collectors, depressants, frothers and sometimes activa-
tors [7,8].

A holistic understanding is essential to evaluate flotation reagent interactions in both
the pulp phase and froth phase, as reagents may also interact with one another, in addition
to their primary roles in the flotation process [9].

The manipulation of these reagents can improve performance; however, the system
is limited by the mineralogy of the incoming ore as well as the quality of the process
water, which in most cases is not controlled. The process utilizes a considerable amount
of continuous water input, making water quality paramount for achieving high process
performance and enrichment of valuables [10]. Recycling of onsite process water changes
the water quality and may compromise the flotation process by affecting the rate of recovery,
froth stability, mineral pulp and flotation performance. This adds complexity to the flotation
process and its chemical reactants.

2. Froth Flotation Fundamentals

Flotation is modelled as a two-stage process; first, the pulp phase, whereby mineral
recovery occurs, and second, the froth phase, whereby concentrated valuable minerals
are separated from the bulk [11]. Figure 1 shows an illustrative diagram of the flotation
process and its components. Suspended mineral particles from the flotation pulp report
to the concentrate through three distinct mechanisms, namely, true flotation, entrainment
and entrapment [12,13]. True flotation is a selective process responsible for the collection of
valuable minerals, while entrainment and entrapment are non-selective processes respon-
sible for the collection of both valuable and unwanted gangue minerals reporting to the
froth phase [14,15]. True flotation is the dominant mechanism through which recovery of
valuable minerals occurs.

Figure 1. An illustration a flotation cell with its components [2].

3. Froth Stability Fundamentals

During the flotation process, air bubbles are generated and pass through the flota-
tion pulp into the froth phase, whereby they emerge surrounded by a thin liquid film. A
plateau border with the liquid film develops when there are at least three bubbles cluster-
ing together [16]. Continuous clustering of bubbles results typically in the formation of
polyhedral bubbles with films in between them; this is referred to as foam in the case of a
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two-phase system and known as froth in the case of a three-phase system containing solid
particles [16].

The froth phase provides an environment for separating hydrophobic valuables from
unwanted gangue and allows for the drainage of entrained material back into the flotation
pulp [17]. For an optimum flotation performance, it is critical for flotation systems to exhibit
an optimum froth stability [18].

Froth stability can be defined as the persistence of the froth or a measure of the froth’s
lifetime [17,19]. When the froth is unstable, bubbles continuously break down before
collection, owing to liquid drainage from entrained material back into the flotation pulp.
When the froth is too stable, not enough liquid drainage occurs, and as a result, high water
and gangue recoveries are achieved. The froth phase may be characterised by the froth
bulk and froth surface; froth surface stability is related to the bursting of bubbles into the
atmosphere, while froth bulk stability is reflected by the size of bubbles on the froth surface.

4. Factors Affecting Froth Stability

Froth stability can be affected by several factors: mainly, particle properties, opera-
tional conditions and chemistry effects such as collectors, frothers and depressants [19].
Particle properties such as particle hydrophobicity, shape and size are of great importance
to bubble particle attachment and significantly affect froth stability; thus have a substantial
effect on the overall flotation performance, an extent which can be greater than the ben-
eficial effects in the pulp phase [20]. These particle property effects have been shown to
significantly affect froth stability with increasing distance from the pulp/froth interface,
where the bubble films are thinner to allow for bridging to occur. Particle properties are said
to have a greater influence on froth stability in comparison to operational factors (aeration
rate, froth height and gas dispersion) and chemistry effects [20].

5. Chemistry Effects on the Stability of the Froth

Collectors impart particle hydrophobicity of minerals and can thus have a significant
effect on froth stability, owing to the difference in the degree of hydrophobicity imparted
onto the mineral particles [21]. Depressants suppress the floatability of naturally floatable
hydrophobic gangue minerals and thus improve their selectivity. High depressant dosages
reduce froth stability owing to the removal of naturally floatable gangue (such as talc) from
the froth phase [9]. Frothers aid bubble formation and froth stabilisation. They increase
froth stability by reducing the surface tension of the gas–liquid interface [22]. An increase
in frother dosage increases froth stability and results in higher solids and water recoveries.
Furthermore, frothers aid with gas dispersion and reduce bubble coalescence in the pulp
phase [22]. The amount of entrained material is related to the water recovered [23–25],
the state of the suspended solid particles in the pulp phase and drainage in the froth
phase. Entrainment is directly related to the amount of water recovered from the froth
phase [26–28], and as the ionic strength increases, the entrainability increases.

6. Froth Stability Measurements

Flotation recovery and concentrate grade are typically what are referred to when
inferring flotation performance. Froth stability measurements aid the quantification and
understanding of flotation performance.

Numerous methods have been proposed and used to measure froth stability, and these
include measuring velocity of the froth, the rate of bursting of the froth and the solids
loaded onto air bubble lamellae [29]. Non-overflowing and overflowing systems can be
used for assessing froth stability. Overflowing systems are preferred over non-overlying
systems, because they take into consideration continuous systems, which is what most
industrial operations are [30].

Ore mineralogy effects on froth stability were assessed by comparing two different ores,
UG2 and iron ore [31], and dynamic froth stability was reported to increase exponentially
with decreasing particle size, as shown in Figure 2. This is consistent with literature
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findings [32], which reported an inverse relationship between particle size and froth stability.
Figure 3 shows that for a given particle distribution, the dynamic froth stability decreases as
the airflow rate increases [20]. Furthermore, similar to Figures 2 and 3 shows a decrease in
dynamic froth stability as the feed particle size increases, thus implying that increasing the
milling time and generally producing finer feed increases the dynamic froth stability. Froth
height variations with time at different aeration rates illustrated these finding further [20].

Figure 2. Dynamic froth stability as function of feed particle size for iron ore and UG2 [31].

Figure 3. Dynamic froth stability variations as a function of d(90) particle size for different flow
rates [20].

Numerous studies have been conducted that relate the destabilizing effects of coarse
particles and stabilizing effects of fine particles on froth stability [20,32,33].

By using grade and desired mineral recovery as performance proxies, the overall
flotation performance was assessed by plotting recovery as a function of feed particle size,
as shown in Figure 4 [31]. An increase in PGM grade was observed with increasing particle
size, and a reduction in PGM recovery was observed with an increase in froth height.
Furthermore, a general increase in PGM recovery was observed with a decrease in feed
particle size [31].

Increasing conditioning time of the collector causes a decrease in froth stability, solid
concentrate and water recovery. Flotation systems must exhibit optimum froth stability to
attain optimum flotation performance; hence, an in-depth understanding and knowledge
of the numerous factors affecting the system is paramount for mineral processing.
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Figure 4. PGM recovery and grade variation as function of feed particle size for UG2 [31].

7. Future Work

Considering the discussed literature review and the ongoing research on froth flotation,
future work must consider investigating the impact of ore feed grade on froth stability,
entrainment, and flotation performance under varying water quality. The overarching aim
of future work is the development of a relationship through which flotation performance
may be predicted if the ore feed grade and water quality are known.
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