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Abstract: In pavement management, it is essential to have a good database with information on
the condition of the roads that compose the corresponding network. In Chile, such a database does
not currently exist, and there is no technology that can evaluate urban pavement condition in an
efficient way. On this research, more than 50,000 images of 13.2 × 2.6 m of asphalt pavement from
different zones of Santiago, Chile, were obtained. These images were processed, and the following
distresses were labeled with two different levels of severities: patches; potholes; and transversal,
longitudinal, and fatigue cracking. These data were used to train and evaluate the following object
detection convolutional neural network models: YOLOv5 and YOLOv7.

Keywords: asphalt pavement; urban pavements; distress detection; distress classification; deep
learning; convolutional neural network; object detection

1. Introduction

This study was carried out in Santiago, Chile, with the purpose of creating a database
for pavement management, specifically to automate and improve the efficiency of urban
pavement monitoring. Using low-cost technology, pavement images are taken and used to
train a YOLO neural network to automate the detection, classification, and measurement of
deterioration in urban pavements.

2. Materials and Methods

Asphalt pavement recordings were obtained by using a GoPro Hero 8 black camera
mounted to a car by using a bicycle rack, as shown in Figure 1 [1].
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This study was carried out in Santiago, Chile, with the purpose of creating a database 

for pavement management, specifically to automate and improve the efficiency of urban 

pavement monitoring. Using low-cost technology, pavement images are taken and used 

to train a YOLO neural network to automate the detection, classification, and measure-
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2. Materials and Methods 

Asphalt pavement recordings were obtained by using a GoPro Hero 8 black camera 

mounted to a car by using a bicycle rack, as shown in Figure 1 [1]. 
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Figure 1. System used to obtain pavement images. Reprinted with permission from Ref. [1]. Copy-
right 2022 Venegas, J.
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By using the camera’s telemetry, frames were extracted to obtain an image of every
section of the pavement.

Due to the position of the camera, the images obtained are not in plan view, and since
the objective is to be able to measure distresses, a perspective transformation is applied [2],
as shown in Figure 2. The red square was used to calibrate the transformation, since it had
previously known dimensions (400 × 400 mm).
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Asphalt pavement images from six different municipalities were obtained, with a to-

tal length of 104.0 km and a total surface of 276.7 km2. 

Figure 2. Perspective transformation applied to pavement images.

For a better understanding of the context of the distresses shown in the image, five of
these images are joined together, working with a 13.55 × 2.66 m pavement section image.
These images are normalized for better performance of the artificial neural network. Some
examples of pavement sections are shown in Figure 3.
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Figure 3. Example of images of asphalt urban pavements from Chile.

Asphalt pavement images from six different municipalities were obtained, with a total
length of 104.0 km and a total surface of 276.7 km2.

The total number of distresses labeled are shown in Table 1. This was performed
manually with the help of some engineering students by using the rectangle labels in VGG
Image Annotator [3].
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Table 1. Number of distresses found in the images obtained in Santiago, Chile.

Severity

Distress Medium High

Fatigue 2128 4240
Transversal Cracking 6783 4701
Longitudinal Cracking 2176 1603
Patch 296 193
Potholes 129 313

It should be noted that the most common singularities found in pavement sections
were also labeled in order to avoid confusion with distresses, such as manhole covers,
drains, and core drilling.

The images are randomly split into 80% training, 10% validation, and 10% testing sets,
while maintaining the same percentages for each type of distress. For both YOLOv5 and
YOLOv7, training with 300 epochs each is carried out using the training and validation
set, while for performance evaluation, the test set is used, i.e., images that have not been
previously seen by the network.

The training was performed using a Lenovo Legion T5i Tower 6ta Gen with a NVIDIA
GeForce® RTX™ 3060 12 GB GDDR6 graphic card.

3. Results

Table 2 shows the performance using both YOLOv5 and YOLOv7 with the test set.
YOLOv5 and YOLOv7 took 144 and 75 h to run, respectively.

Table 2. Results obtained using YOLO.

YOLO Precision (%) Recall (%) mAP 0.05 (%)

v5 41.4 43.3 37.4
v7 42.2 39.9 36.8

The confusion matrices are shown in Figure 4.
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An example of the results obtained by evaluating the test set in YOLOv5 is shown in
Figure 5.
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Figure 5. Example of labels obtained by evaluating the test set for (a) the labels assigned and (b) those
obtained by YOLOv5.

4. Discussion

As shown in Table 2, both versions of YOLO achieved a similar performance.
As for the distresses, alligator and transverse cracking demonstrated better perfor-

mance (over 50%). However, longitudinal cracking, patches, and potholes are mostly
undetectable.

Although the network can identify and classify the distresses, it is unreliable in terms
of severity classification, which can be seen in the diagonal of the confusion matrices in
Figure 4.

Finally, YOLO was originally trained with the COCO dataset, in which objects are
clearly defined, unlike distresses, where different observers might classify cracks differently.

5. Conclusions

In conclusion, there is no significant difference between the performances of the
different YOLO versions. However, YOLOv7 took about half the time it took to train
YOLOv5, which is a significant difference.

The pavement distresses that can be found with these results are alligator and trans-
verse cracking; the network developed in this investigation may be useful for the detection
of manhole covers and drains.
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