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Abstract: Maintaining an acceptable durability and satisfactory in-service condition for pavements is a
crucial and relatively complex task, which otherwise can have considerable economic, environmental,
and social consequences. Design and management of pavements have traditionally relied mainly on
empirical models. However, pavements have been undergoing drastic changes, especially during the
new millennium, which can compromise the reliability of the empirical models which were developed
based on relatively stagnant historical data. Climate change, traffic loading growth and advancements
in pavement materials are some of the main drivers of moving towards more mechanistic-empirical
methods which would allow for a better understanding of pavement performance evolution in the
future. To this end, this paper discusses the opportunities and challenges of a proposed framework
for developing smart pavements in Canada, as well as a summary of the efforts that so far have
been made in this regard. The goal of the study is to enable autonomous monitoring and data
collection from the instrumented pavement sections in a suitable manner to allow for training
Artificial Intelligence models, improving interpretation of the pavement responses and, ultimately,
future pavement performance predictions.

Keywords: smart pavements; instrumentation; performance prediction; artificial intelligence; machine
learning; mechanistic responses; autonomous monitoring

1. Introduction

Pavement networks play a key role in our modern societies by accommodating the
economical, efficient, and safe movement of goods and people [1]. In addition to their
significant economic and societal impacts, pavement construction and maintenance ac-
tivities demand an enormous amount of natural, and mainly non-renewable, resources
annually, and, hence, can result in a significant environmental footprint if not managed
properly [2]. Therefore, maintaining the long-term performance and durability of pave-
ments is a common goal at different levels including the planning, designing, construction,
and management of transportation infrastructure [3,4]. Pavements are typically designed
to last for several decades. Traditionally, we have mainly relied on empirical design based
on limited experimental studies that were conducted between 1956 and 1961 in the U.S. [4].
Despite the relatively good success rate of these approaches in the past, the appearance
of premature distresses and unexpected shortening of pavements’ service life during the
past two decades have motivated pavement engineers and researchers to further inves-
tigate the contributing mechanisms behind these phenomena. To this end, a paradigm
shift in terms of pavement design and material characterization has been happening over
the course of the past two decades which requires moving away from purely empirical
approaches toward linking the empirical and mechanistic characteristics to develop better
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distress prediction models. Development of the Pavement Mechanistic-Empirical Design
(PMED) [5] can be named as one of the well-known examples in this area. Although a ro-
bust mechanistic platform for modelling pavement performance is a positive step forward
in achieving a better accuracy when designing pavement structures, it is also crucial to
calibrate and verify pavement structural responses and performance trends in the eye of the
changing climate and introduction of unconventional paving materials [6]. This requires
systematic management of the transportation infrastructure, performing regular pavement
condition assessments, intervening for maintenance and rehabilitation activities in a timely
manner, and improving the practice of design and construction to accommodate for the
desired resilience level against climate change effects and the dynamic nature of the exerted
traffic loading. The development of autonomous pavement monitoring systems would,
therefore, yield several advantages in terms of informing decision making about the timing
of maintenance and rehabilitation (M&R) activities based on more realistic performance
prediction models [7]. As a result, developing smart pavements has recently become the
focus of some research groups across the world.

On the other hand, the application of Machine Learning to predict pavement’s perfor-
mance measures has also been gaining momentum during the past two decades [8,9]. Most
of the work conducted to date has been focused on the prediction of the functional indexes
such as the International Roughness Index (IRI) [10–12] or general pavement condition
metrics such as the Pavement Condition Index (PCI) [13–15]. Predicting the structural
response of pavements and distress modes such as rutting and cracking have seen rela-
tively limited attention. Nevertheless, measuring pavement responses in a semi-continuous
manner using smart pavement sections also provides an opportunity for utilizing the
artificial-intelligence-based methods to improve the pavements’ performance prediction as
well as locally calibrating the PMED.

This paper provides a summary of the proposed smart pavement framework and
the activities undertaken to date in this regard through the instrumented pilot section in
Ontario, Canada.

2. Proposed Smart Pavement Framework

The proposed conceptual framework for smart pavements in Canada is composed
of five major components. Figure 1 presents a schematic overview of this framework,
including: (i) instrumented pavement sections and a Data Acquisition (DAQ) triggering
system; (ii) an autonomous and semi-continuous data logging platform with remote data
collection/storage capability; (iii) a preliminary (raw data) postprocessing unit; (iv) a
secondary data aggregation and metrics computation unit; and (v) a cumulative structured
database to store the data pertinent to long-term performance and key structural responses,
through the use of both the dynamic and static data types.
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A maximum traffic speed of 70 km/hr would be expected for the pilot section built
to implement the proposed framework in Ontario, Canada. This required using dynamic
asphalt strain gauges and pressure cells (PC) with a minimum data logging rate of 1000 Hz
per channel to capture the full spectrum of the dynamic pulses induced by moving ve-
hicular loads. The selected gauges provided a rate of 1 kHz per channel (not shared).
Furthermore, temperature and moisture trees were instrumented to record the temperature
and moisture variation at nine different levels within the pavement structure (see Figure 2).
The temperature gradient would especially provide valuable information that could help
better model the structural response of the pavement at different times of the day and
year. Temperature probes (identified by red crosses in Figure 2) recording every 15 min can
capture the daily fluctuation and gradient within the pavement structure.
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Given the dynamic and semi-continuous nature of the collected data, a triggering
system to activate the data collection can help avoid the collection of unnecessary data.
This can be achieved through one of the pressure cells embedded underneath the asphalt
concrete layer and at a distance from the main cluster of the sensors array, which was
used to awaken the DAQ and collect the data until 120 s after the last sensed pulse. Using
laser reflectometers or traffic cameras were also identified as viable options, which are not
investigated in this study.

The DAQ system is equipped with a wireless modem that allows for remotely access-
ing the system and periodic downloading of the data. The raw data need to be routinely
post-processed for noise removal and to truncate the signals with their corresponding time
stamps. These data are then aggregated in terms of engineering metrics to describe the peak
magnitudes and frequencies of strain/stress pulses at different depths of the pavement
structure, as well as the incremental temperature and moisture changes.

3. Challenges and Opportunities
3.1. Barriers for a Fully Functional System

One of the major hurdles for the dynamic and semi-continuous collection of pavement
responses is handling humongous amounts of generated data, which is different than the
traditional static data collection. This poses multiple problems, e.g., the need for timely
raw data processing and the required data storage logistics. The aggregated processed data
in this project will be ultimately transferred to the National Logistics Database in Canada,
as a part of the Artificial Intelligence for Logistics (AI4Logistics) program. Another issue
preventing the widespread use of such a system remains the high cost for the existing
pavement instrumentation. Furthermore, a comprehensive array typically requires a
considerable power supply, buried wired connections, and interruptions to the conventional
paving operations. Developing a wireless sensor that can eliminate the need for wired
connections has been the focus of several research groups, including the authors’ research.
However, technical barriers such as the need for substantial power and limited operation
life on battery power remains a gap in the existing work, along with the short life span of
embedded sensors under sever climate conditions, which suggest the need for research
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on the ruggedness of the sensors. Promising progress has been made during the past few
years in terms of wireless temperature measurements. However, this remains a challenge
for stress/strain measurements without wired connections and power.

With respect to pavement data analysis and interpretation, most of the existing work
on AI applications has focused on the use of supervised learning algorithms to predict
functional metrics, such as the International Roughness Index (IRI), or overall pavement
condition measures such as PCI, based on the existing databases such as Long-Term
Pavement Performance (LTPP). The application of Machine Learning (ML) algorithms
to obtain performance-related measures from the structural responses of pavements has
seen limited attention. This also requires utilizing a database of a certain size to develop
meaningful models.

Finally, unlike the controlled sections and accelerated testing facilities, monitoring live
traffic typically becomes more complex due to the wandering of traffic loads, which ulti-
mately affects the measured responses’ amplitudes relative to the axles’ vertical alignment
on top of the sensors array. On the other hand, the axles’ load and configuration will be
highly variable as compared with the controlled tracks. In the case of live traffic loading,
having a Weigh-In-Motion (WIM) station can significantly help with better interpretation
of the structural responses to different axles. However, a WIM is not always available,
creating one may not be practical for an in-service pavement section, and one-to-one syn-
chronization of detailed traffic data with millions of recorded responses will require a lot of
effort. The latter requires a considerable budget and would require further approval from
the owner agency.

3.2. Applications of Smart Pavement Data and Future Steps

The ability to measure actual pavement responses under live traffic loading and
in-service conditions allows for improving the current state of pavement design and man-
agement practices. Three major areas that can especially benefit from such a system are:
(i) the quantification of climate change implications for pavements, (ii) validating the
pavement analysis results with in situ measured data as well as calibration of the MEPDG
transfer functions and distress models, and (iii) developing enhanced pavement perfor-
mance prediction models using suitable ML algorithms. Furthermore, smart pavements
can facilitate the implementation of innovative and high-performance paving materials, for
which very limited data currently exist in terms of their in-situ responses/performance.
This is especially a barrier in reflecting the added value for using such materials in the
existing design methods, hence their implementation.

Moving forward, data collection from the proposed instrumented section in Ontario
will be continued and once the required data size is available, pertinent ML models will
be trained and tested by the research team. In the meantime, the research team has been
working on the application of a Random Forest (RF) algorithm using the existing LTPP
pavement performance database to predict the IRI and Rutting performance of flexible
pavements in North America. In terms of structural response verification, samples of
the paving materials have been collected for each layer and mechanical testing in the lab
will be performed to correlate the engineering properties of the materials measured at the
laboratory scale to their corresponding in-service response under varying temperatures
and loading frequencies. In addition to the live-traffic data, verifications will continue to be
performed using a truck with a known axle load driving on the instrumented section at
different passing speeds, at least once every season, and ideally for several years.
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