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Abstract: Reducing the quantities of engineered materials provides a significant opportunity to
mitigate the environmental impacts caused by material production and processing. Although the
efficient use of materials in building construction has been emphasized, there has been little attention
given to measuring the material use efficiency (MUE) of a project. This research fulfills this gap by
using data envelopment analysis (DEA) as a benchmarking tool to generate an overall perspective on
the MUE and to further compare its efficiency with that of peer projects, thereby promoting enhanced
efficiency through target setting. In this research, MUE was measured by adopting the quantities of a
variety of materials consumed during construction as input variables and the floor area of a built
facility as an output variable. To generate a reliable MUE performance, a stepwise variable selection
process was applied and then the performance was ranked based on evaluating cross-efficiency.
In addition, clustering analysis and DEA were fused to enable a more realistic target to be set for
each input, thereby determining practical targets for each underperforming project. It is anticipated
that the proposed MUE benchmarking model would enable projects to recognize the gap with the
best-performing projects and help them determine the targets to focus on to become efficient.
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1. Introduction

Recent research in the realm of the construction industry proposed possible measures
that can generate a quantitative approximation of material use efficiency (MUE) by using
efficiency measures that evaluate the ratio of useful input to output. These measures
assume that an improved design that optimizes the required building size and functional
areas can reduce the amount of building materials needed to construct a building [1]. To
this end, some researchers used the quantities of the main building materials consumed
for a project as inputs and used the area of floor space generated with the materials as the
output. However, a robust approach for assessing the MUE based on factual data was not
demonstrated in the study. Moreover, the research lacked a discussion on how to quantita-
tively assess the MUE at the project level and how to make continuous improvement in the
efficiency of a project possible by cross-project comparisons.

One of the identified challenges with quantifying the MUE is that there are various
types of materials used for building construction and they are generally quantified in
diverse measurement units (e.g., tons for steel, cubic yards for concrete, or square footage
for glazing). Moreover, different projects may operate in different environments (e.g.,
function, location, and size) and accordingly, the level (or degree) of MUE can vary from
one project to another. In this regard, it would be desirable if all the materials could be
considered together to measure the efficiency while taking into account differences in
many project characteristics for credible cross-project comparisons and benchmarking. One
modeling methodology that provides a flexible and powerful approach for measuring
efficiency while facilitating cross-project comparison is data envelopment analysis (DEA), a
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linear programming (LP)-based relative efficiency evaluation methodology. Building on the
existing body of knowledge on MUE and DEA, this paper proposes a MUE benchmarking
model that can generate reliable MUE scores for multiple building projects, thereby allowing
the scores to be compared for possible improvements through targeted design.

2. Background
2.1. Material Use Efficiency

Material efficiency includes a broad range of technical strategies aimed at pursuing
sustainable building project delivery which are introduced by reducing environmental and
economic impacts arising from material production and processing, as well as material
consumption. Examples of such efforts include industrialized building construction [2],
downsized building design [3], the flexible layout of building space [4], minimum quantity
of materials used [5], more intensive use of a building (by reducing per capita floor area),
extension of building lifespan, and reuse and recycling of building materials [6].

To alleviate the environmental impacts of construction materials and the consequences
of increased material costs, one potential strategy is MUE which is rather focused on
reducing the demand for construction materials needed to build the facility. When building
designs use only the materials required, in the right place and without excess, the demand
for materials is reduced for the same size of the facility which is often represented by the
area of floor space or building gross square footage (BGSF) [6]. Likewise, ensuring each
structural element is appropriately sized and working efficiently takes some additional
design time but can result in substantial material savings during the construction phase.

2.2. Data Envelopment Analysis

DEA is a mathematical procedure that utilizes an LP technique and identifies a set
of weights that individually maximizes each DMU’s efficiency using the same weights
for all DMUs [7]. There are two different types of models in DEA depending on the
type of envelopment surface formed by the frontiers; (1) the CCR model developed by
Charnes and colleagues and Cooper and Rhodes [8] and (2) the BCC model developed by
Banker, Charnes, and Cooper [9]. The first model assumes that the increase in outputs is
proportional to the increase of inputs at any scale of operation, and thus it is known as a
constant returns-to-scale (CRS) model. The second one, however, allows the production to
exhibit increasing or decreasing returns-to-scale so it is called a variable returns-to-scale
(VRS) model. Both models are further classified by their orientation which indicates the
direction that an inefficient DMU approaches the frontier; either an increase in its output
levels while keeping the same level of input (i.e., output-oriented) or a decrease in its
input while maintaining the same output level (i.e., input-oriented). In both input- and
output-oriented models, the best DMUs are assigned an efficiency score of 1 (or 100%) and
those of the others are less than 1. For brevity, the mathematical formulations for other DEA
models are not presented here; instead, the reader is referred to a more comprehensive
text [10].

3. MUE Benchmarking Model

In this study, an output-oriented CCR model was employed to answer the question;
by how much can inputs be proportionally decreased while keeping the level of output
constant? This way, the outcomes of the DEA analysis can be used to identify the savings or
reductions in inputs and the most suitable direction to enhance inefficient DMUs. However,
traditional DEA alone is not enough to set reliable benchmarks for MUE because of some
critical limitations that the conventional DEA model exhibits. The MUE benchmarking
model was designed to generate reliable benchmarking by improving the three main
deficiencies of the traditional DEA model.

First of all, the DEA results depend heavily on the input and output variables used in
the analysis, which means attention to variable selection is crucial for obtaining reliable
outcomes [11]. This is mainly because the greater the number of input and output variables,
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the less constrained the model weights assigned to the inputs and outputs, resulting in less
discriminating results [12]. In this regard, one of the main challenges in DEA application is
to find a parsimonious model using as many variables as required but as few as possible.
To address this issue, we employed a formal stepwise approach to prioritizing meaningful
inputs. Such an approach involves sequentially minimizing the average change in the
efficiencies as inputs are dropped from the analysis.

Moreover, each DMU selects its own most favorable input and output weights for
computing its efficiency, instead of using the same weights for all DMUs. This flexibility in
choosing the weights prevents DMUs from being compared on a common base. The same
issue regarding this weighting scheme can also happen when some DMUs heavily weight a
few favorable inputs and outputs while ignoring other variables to achieve a high efficiency
score [13]. The MUE benchmarking model overcomes this limitation by evaluating the
efficiencies based on a cross-efficiency method (see Table 1), such as a DEA extension tool.

Table 1. Generalized cross-efficiency matrix (CEM).

DMU
Target DMU Average

Cross-EfficiencyDMU1 DMU2 . . . DMUn

DMU1 E11 E12 E1n
n
∑

k=1
E1k/n

DMU2 E21 E22 E2n
n
∑

k=1
E1k/n

...
...

...
...

...
...

DMUn En1 En2 . . . Enn
n
∑

k=1
Enk/n

Lastly, DEA presents the capability of determining a specific reference set for ineffi-
cient DMUs and deriving their potential improvements (or targets). Although this is a
remarkable feature of DEA, the limitation of this feature is that an inefficient DMU and the
corresponding reference set of the DMU may not be inherently similar in their operations
or practices. This is because DEA assumes that DMUs are homogeneous and identical in
operations or practices. Accordingly, the efficiency scores obtained from the DEA may
cause the degree of improvement to become unattainable for an inefficient unit. To solve
this problem, in the MUE benchmarking model, clustering analysis was adopted to cluster
DMUs into a set of groups so that the best performing DMU in each cluster is utilized as
the benchmark (or target) for other DMUs in the same cluster.

4. Summary and Conclusions

This study introduced a MUE benchmarking model that leverages the capability
of DEA to measure the MUE performance and to identify useful benchmarks enabling
inefficient projects to set potential improvement paths. To accomplish the goal, the model
was designed to overcome the conventional application of DEA by selecting meaningful
variables before running DEA analysis, ranking the efficiency scores on a common basis
by measuring cross-efficiency, and integrating DEA with clustering analyses to determine
practical references or targets from which inefficient DMUs can learn from. As a future
direction, qualitative research will be conducted to validate the proposed model. With
continuous data collection, it will be possible to conduct rigorous analyses to examine the
relationship between a host of construction materials and different parameters of building
products, which will help the authors update the model by including various input and
output variables.
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