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Abstract: The passage of superloads over the jointed plain concrete pavements (JPCPs) causes sig-
nification fatigue damage to the JPCPs. This mainly happens because of their non-standardized
loading configurations and high gross vehicle and axle weights. Developing a high-accuracy pre-
diction model for JPCP fatigue damage under superloads is strongly required to complement the
mechanistic-empirical (ME) pavement design in aspects of its wide range of dimensions, including
number, spacing, and loading of tires and axles. In this study, various data-driven models based
on different theoretical approaches, including artificial neural network-based models, generalized
additive models, and multiple linear regression models, were constructed using a well-established
database derived from finite-element analysis results in order to predict the target response for
JPCP fatigue damage when subjected to superloads. The prediction accuracies of these data-driven
models were then evaluated to confirm their further applicability to the existing ME pavement
design software.

Keywords: superload; jointed plain concrete pavement; fatigue cracking; finite element analysis;
data-driven model

1. Introduction

Fatigue damage in jointed plain concrete pavement (JPCP) is one of the major damage
types that traffic loads can induce. Particularly, fatigue damage is often caused by over-
weight trucks or superloads with gross vehicle or axle weights that exceed a state’s permit
limits. Unlike conventional vehicle types, superloads are distinguished from general vehicle
types by their non-standardized loading configurations, including the number and spacing
of tires and axles, for the purpose of transporting oversized and heavy payloads [1]. Previ-
ous studies have suggested using simple empirically based generalized power law theories
to describe the nonlinear relationship between pavement damage and traffic loads, such
as the fourth power law from the American Association of State Highway Officials Road
Test [2], or using different power-law exponents dependent on different pavement struc-
tures and loading conditions from follow-up study [3]. As such, new mechanistic-based
analysis approach that reflects the characteristics of superloads beyond the scope of general
loading configuration is still required. AASHTOWare Pavement Mechanistic-Empirical
(ME) Design software, which builds upon the ME pavement design guide [4], has provided
ME-based JPCP fatigue damage calculation as a data analysis and back-calculation tool.
It has done so by generating the horizontal tensile stresses in a Portland cement concrete
(PCC) layer from a series of artificial neural network (ANN)-based models using a database
of finite-element analysis (FEA) results produced by using ISLAB 2000 [5]. However, the
database used to train the ANN models in this software did not include a wide range of
dimensions with respect to superload loading configurations, and so the extrapolation of
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explanatory variables in terms of loading parameters may lead to inaccurate calculation of
JPCP responses when subjected to superloads.

In this study, various data-driven models, including ANN-based models, generalized
additive models (GAMs), and multiple-linear regression models, were constructed using
a database of FEA results (i.e., the critical horizontal tensile stress at the bottom and top
of the PCC slab when subjected to superloads) collected from ISLAB 2005. The prediction
accuracy of these data-driven models was evaluated and compared to confirm their further
applicability to the existing Pavement ME Design software.

2. Methodology

The FEA results, including the critical horizontal tensile stress in PCC slab depending
on different JPCP structures and superloads, used as database to train and test the prediction
models, were collected from the same author’s previous study [1]. The experimental design
for FEA and data-driven modeling is briefly summarized in Table 1. Note that each critical
tensile stress of PCC slab was calculated from pre-determined critical loading locations
differentiated by superload types and JPCP structures.

Table 1. Experimental matrix of JPCP structures for FEA and data-driven modeling [1].

Input Variables (Explanatory Variables)  Value Unit
PCC layer thickness 200, 230, 250 mm
Composite modulus of subgrade reaction 14 (spring), 33 (summer), 33 (fall), 68 (winter) MPa/m

Transverse joint spacing

4.5 for 200 mm and 230 mm PCC layer thickness
5 for 250 mm PCC layer thickness m
6 for 200 mm, 230 mm, and 250 mm PCC layer thickness

Coefficient of thermal expansion 7.7,9.4 10-%/°C
Temperature gradients —0.09, —0.04, 0, 0.04, 0.09 °C/mm
Elastic modulus of PCC layer 27,500 MPa

Traffic loads

IoH!: 18 types x 4 payload levels (100%, 75%, 50%, 0%) = 72 cases
SHL 2: 16 types x 4 payload levels (100%, 75%, 50%, 0%) = 64 cases

Note: Individual input variables applied to non-dimensional variables can have a wider range of values than
those indicated in the table depending on other variables. ! IToH = implements of husbandry; representative
superload types for transporting agricultural products, slurry, or water, including grain carts, manure tankers,
agricultural trailers and trucks. 2 SHL = superheavy load; representative superload types for transporting wind
turbines or engine blocks, including drop-deck types, and single-row and dual-row modular types.

A database collected from FEA using ISLAB 2005 was then used to train and test
surrogate data-driven models based on different theoretical approaches. (i) ANN-based
models, (ii) GAMs, and (iii) multiple linear regression models were constructed in this study
to compare and analyze each of their prediction accuracies. The data and statistical sets of
data-driven models and a brief introduction to each approach are summarized and listed in
Figure 1. Please refer to previous studies for a detailed theoretical background on each data-
driven approach similarly applied to flexible pavement cases [6] and further application
of GAM to earthquake engineering [7]. As can be seen from Figure 1, a total of 24 GAMs
varying by three statistical distributions, two link functions, and two spline bases, and a
total of 24 ANN models consisting of three different numbers of hidden layers and four
different numbers of neurons per each layer were constructed for comparative evaluation.
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1. Data-driven models with full explanatory variables

Individual variables: (1) Thickness of PCC layer (2) Joint spacing (3) Temperature gradient (4) Composite modulus of subgrade reaction (5) Tire pressure (6) Axle weight
¥ Axleloads L Joint spacing
(2)7=

Non-dimensional variables: (1) Axle loads/slab weight = (3) Korenev's non-dim. temp. gradient

PCC slab areaxPCC layer thickness xunit weight ~ Radius of relative stif fness
2. Data-driven models with selected explanatory variables

Individual variables: (1) Tire pressure (2) Axle weight
Non-dimensional variables: (1) Axle loads/slab weight = L dxle loads

PCC slab areaxPCC layer thickness xunit weight

@ L Joint spacing
1~ Radius of relative stif fness

(3) Korenev's non-dim. temp. gradient

GAMSs: Statistical prediction model applying smooth function as a linear predictor and spline function as a nonlinear predictor

Statistical setting I Gamma distribution I I Poisson distribution I IGaussia.n distribution I

Link function

Spline basis | crst | | teRsz| | czs | | crs | Jrers | | crs | | ers | | crs | [ rers | | crs | | Ters |
Full explanatory variables Model G1-1 Model G1-2  Model G1-3 Model G1-4 Model G1-5 Model G1-6  Model G1-7 Model G1-8 Model G1-9 Model G1-10 Model G1-11 Model G1-12
Selected explanatory variables Model G2-1 Model G2-2  Model G2-3 Model G2-4 Model G2-5 Model G2-6 Model G2-7 Model G2-8 Model G2-9 Model G2-10 Model G2-11 Model G2-12

Note: !CRS = Cubic Regression Spline; *TPRS = Thin Flate Regression Spline

ANN models: Multi-layer feedforward artificial neural network trained with stochastic gradient descent using back-propagation

Number of hidden layers | 3 | | 4 | | 5 |

Number of neurons per layer

v ¥ ¥ v ] ¥ ] ¥ v ¥
[ 50 || 200 Jf 150 || 200 | [ 50 || 200 J| 150 | [ 200 | [ 50 || 100 || 150 || 200 |

Full explanatotyvariab[es Model A1-1 Model A1-2 Model A1-3 Model A1-4 Model A1-5 Model A1-6 Model A1-7 Model A1-8 Model A1-9 Model A1-10 Model A1-11 Model A1-12
Selected explanatory variables Model A2-1 Model A2-2 Model A2-3 Model A2-4 Model A2-5 Model A2-6 Model A2-7 Model A2-8 Model A2-9 Model A2-10 Model A2-11 Model A2-12

Figure 1. Data and statistical sets of data-driven models.

3. Prediction Accuracy of Data-Driven Models

All prediction models shown in Figure 1 were evaluated by splitting the original
dataset into 70 percent and 30 percent portions to constitute a training set and a testing set.
Figures 2 and 3, respectively, show the prediction accuracy of each model for the critical
horizontal stress at the bottom and top of the PCC slab. It can be easily confirmed from the
figures that ANN models outperform both GAMs and multiple regression models for all
superload types when determining the best prediction model for each prediction approach
and superload type. In the case of an agricultural trailer or truck, GAM exhibits a lower
prediction accuracy for the critical horizontal stress at the top of the PCC slab than the
multiple linear regression model due to the relatively small number of data points of the
training dataset collected for those superload types.
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Figure 2. Prediction accuracy evaluation in case of: (a) ANN model A1-6 predicting critical horizontal
stress at the bottom of the PCC slab when subjected to single-row modular-type SHL; (b) models
showing the best prediction accuracy for each prediction approach and superload type.
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Figure 3. Prediction accuracy evaluation in case of: (a) ANN model A1-6 predicting critical horizontal
stress at the top of the PCC slab when subjected to single-row modular-type SHL; (b) models showing
the best prediction accuracy for each prediction approach and superload type.

4. Conclusions

Overall, ANN-based prediction models exhibited better accuracy than GAMs or
multiple regression models in predicting critical horizontal stress at both the bottom and
top of the PCC layer in JPCPs under superload conditions. Further studies are needed
to determine the prediction accuracy evaluation of other deep learning algorithms for
superload issues.
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