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Abstract: An electrochemical aptasensor for the detection of tetracycline (TET) is prepared based
on a methylene blue (MB)-tagged DNA aptamer, with the sequence 5′-MB-CCC CCG GCA GGC
CAC GGC TTG GGTTGG TCC CAC TGC GCG-thiol-3′. The DNA aptamer is chemisorbed on a gold
electrode and differential pulse voltammetry (DPV) is utilized for the detection. In particular, upon
binding of the TET with the purpose-designed aptamer, there is an increase in the current intensity, as
a result of the increased proximity of the MB molecule to the gold surface. The sensor is tested using
aqueous samples spiked with TET concentrations between 1 and 1000 nM and a limit of detection
(LOD) of 1.2 nM is determined. Furthermore, the dissociation constant is estimated to be 1.4 nM
using a Lineweaver–Burk plot.
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1. Introduction

With the advent of antibiotics, human and veterinary medicine significantly advanced
in fighting bacterial disease [1]. Nevertheless, the influx of drugs to the environment can
pose a significant threat to aquatic and terrestrial biodiversity as well as to the human
food chain [2]. In this regard, tetracycline (TET), a common drug used against intercellular
bacteria, such as chlamydia, mycoplasmas, rickettsia, and protozoan parasites, has often
been traced in water, food, or milk samples [3,4]. Thus, its qualitative and quantitative
monitoring in various systems is important for public health.

Currently, TET is often determined using high-performance or thin-layer liquid chro-
matography [5,6]. Moreover, enzyme-linked immunosorbent assay (ELISA) kits have also
been used for this purpose [7]. Nevertheless, despite their ability to detect TET with both
selectivity and sensitivity, they can be either expensive or also time-consuming, requiring in
many cases qualified staff. In this regard, biosensors [8] promise a fast, lower-cost technol-
ogy for the detection of different pharmaceutical compounds. In particular, electrochemical
aptasensors [9] provide a robust alternative based on synthetic DNA (or RNA) nucleotides
that are easily produced, are target specific, and can be immobilized with ease on a number
of surfaces. Moreover, they offer chemical stability and allow for the regeneration of the
aptasensors, due to the electrostatic interactions between the aptamers and target.

A number of electrochemical aptasensors have been recently reported as a platform
for a robust, low-cost, and often multianalyte analysis, while being compatible with mi-
crofabrication technologies [8]. In particular, this work focuses on the detection of TET in
an aqueous environment using an electrochemical aptasensor based on a gold working
electrode where a methylene blue (MB)-modified DNA synthetically produced oligonu-
cleotide is immobilized via the Au-S bond. In this regard, the limit of detection (LOD) is
investigated for our aptasensors, and the dissociation constant Kd is deduced.
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2. Materials and Methods
2.1. Reagents and Aptamer Sequence

All reagents were purchased from Sigma-Aldrich. The tetracycline antibiotic (TET, Mw
= 444.43 Da) was made from bacteria of the genus Streptomyces. Tris(2-carboxyethyl) phos-
phine (TCEP) powder was used to break down any disulfide bonding while 6-Mercapto-1-
hexanol (MCH) was utilized to avoid any non-specific binding. A MB-tagged thiol-modified
DNA aptamer with the composition 5′-MB-CCC CCG GCA GGC CAC GGC TTG GGTTGG
TCC CAC TGC GCG-thiol-3′ was used, as described by Niazi et al. [10]. The aptamer
was purchased from GeneCust (Boynes, France). The stock solution for the aptamer was
based on a TE buffer containing 10 mM Tris-HCl and 1 mM Ethylenediaminetetraacetic
acid (EDTA) at pH = 8. Finally, the working buffer was based on 10 mM PBS containing
Tris−HCl (20 mM), NaCl (100 mM), MgCl2 (2 mM), KCl (5 mM), and CaCl2 (1 mM) at
pH 7.6.

2.2. Preparation of the Aptasensor

The aptasensors used gold electrode disks with a 2 mm diameter that were initially
polished using alumina powder and then sonicated 15 min in ethanol. After, the electrodes
were rinsed in deionized water and dried under a nitrogen gas flow. In order to prepare
the aptamers for immobilization, they were first heated to 90 ◦C for 10 min and then cooled
to room temperature to provide proper aptamer folding. After that, 1 µM of aptamer was
diluted in the TE buffer and incubated with 10 mM TCEP (1 h) for dissociation of disulfide
bonds. For the immobilization, the aptamer was added on the clean Au electrode, until
the 2 mm surface was completely covered and incubated for 1 h at room temperature.
After that, MCH at a concentration of 2 mM in deionized water was added on the surface
overnight to prevent any non-specific binding. After rinsing the aptamer, the sensitized
electrode was incubated for 30 min with various concentrations of TET between 1 nM
and 1000 nM, which were diluted in the above-mentioned working buffer. The scheme
of the sensing surface is presented in Figure 1. The TET detection was performed using
differential pulse voltammetry (DPV).
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2.3. Electrochemical Measurements

The electrical parameters were determined using a Zahner potentiostat, with a gold
working electrode (2 mm), a Ag/AgCl reference, and a Pt wire as a counter. All electrodes
were purchased from CH Instruments, USA. The sensor response was studied using
differential pulse voltammetry (DPV) with a potential range from 0 V to –0.6 V and a
resting time of 60 s.

3. Results and Discussion
3.1. Determination of Different Concentrations of TET Using Aptasensing

The determination of TET was investigated for different concentrations ranging be-
tween 1 and 1000 nM in three independent experiments, with good reproducibility. The
aptasensor showed selectivity to TET, using spiked samples in an aqueous solution. In
particular, the following concentrations were looked at: 1 nM, 5 nM, 10 nM, 30 nM, 100 nM,
300 nM, and 1000 nM. The binding of TET on the aptasensor induced an increase in the
oxidation peak, as can be seen in Figure 2 below.
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Figure 2. DPV of the aptasensor following with incubation of TET at various concentrations (see
inset).

Furthermore, the calibration plot of (I-Io)/Io versus the logarithmic scale of the TET
concentrations was examined (Figure 3) and regression was applied to identify the limit
of detection (LOD) using the relationship LOD = 3σ/α, where σ denotes the standard
deviation of the response and S denotes the slope of the linear calibration plot [11]. The
limit of detection was then determined to be 1.2 nM

Our results are comparable with the literature, considering that TET has been detected
in aqueous solutions with a LOD varying from 7.8 × 10−11 M up to 5 × 10−9 M, depending
on the method used, electrode architecture, aptamer sequence, and immobilization [12].
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3.2. Deduction of the Dissociation Constant Kd for Our Aptamer Sequence

In this investigation, we also deduced the dissociation constant (Kd) for our aptamer,
under the specific buffer conditions, using a Lineweaver–Burk plot [13], as seen in Figure 4
below:
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Figure 4. Lineweaver–Burk plot leading to a constant of dissociation, Kd = 1.4 nM.

In particular, Kd shows the binding strength between the aptamer and target, with
values ranging from micro to picomolar levels [14]. In general, a low value for the dissocia-
tion constant relates to a high affinity between the aptamer, indicating that a low aptamer
concentration of the aptamer and target is needed for binding. Linear regression yielded a
linear fit, such that y = 1.3897x + 0.9765, thus leading to a value of Kd = 1.3897/0.9579 nM
or Kd = 1.4 nM, showing that aptasensors provide a robust structure for TET detection.

4. Conclusions

An electrochemical aptasensor was developed for the detection of TET using a single-
stranded DNA aptamer that selectively binds to TET in an aqueous solution. In particular,
it was immobilized on a gold electrode and the analysis was performed using DPV. Our
results show that the electrochemical aptasensor is sensitive to TET where the limit of
detection (LOD) was determined to be 1.2 nM, and the Kd was shown to be 1.4 nM with



Eng. Proc. 2023, 35, 38 5 of 5

the help of a Lineweaver–Burk plot. The aptasensor developed in this study can potentially
be used for detection of tetracycline in pharmaceutical preparations, drinking water, and
contaminated food samples such as milk.
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