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Abstract: Mobile phones, laptops, computers, digital watches, and digital calculators are some
of the most used products in our daily life. In the background, to make these gadgets work as
per our desire, there are many simple components necessary for electronics to function, such as
resistors, capacitors, and inductors, which are three basic circuit elements. The Memristor is one such
component. This paper provides simulation results of the memristor circuit and its V-I characteristics
at different functions as an input signal. A well-trained ANN is able to recognize images with
higher precision. To enhance the properties such as accuracy, precision, and efficiency in recognition,
memristor characteristics are introduced to the neural network, however, older devices experience
some non-linearity issues, causing conductance-tuning problems. At the same time, to be used in
some advanceable applications, ANN requires a huge amount of vector-matrix multiplication based
on in-depth network expansion. An ionic floating gate (IFG) device with the characteristics of a
memristive device can solve these problems. This work proposes a fully connected ANN using
the IFG model, and the simulation results of the IFG model are given as synapses in deep learning.
We use algorithms such as the gradient-descent model, forward and backward propagation for
network building, and weight setting in neural networks to enhance their ability to recognize images.
A well-trained network is formed by tuning those memristive devices to an optimized state. The
synaptic memory obtained from the IFG device will be used in other deep neural networks to increase
recognition accuracy. To be an activation function in the neural network, sigmoid functions were
used but later replaced by the ReLu function to avoid vanishing gradients. This paper shows how
images were recognized by their front, top, and side views.

Keywords: memristor; memristive device; ionic floating gate (IFG); artificial neural network (ANN);
gradient descent model; forward and backward propagation; ReLu function

1. Introduction

A memristor is a simple passive two-terminal structure first coined by Professor Leon
Chua in 1971. It is the concatenation of a “Memory resistor”, which is a fourth fundamental
circuit element besides resistor, capacitor, and inductor; this is the missing pair link that
states the relationship between charge and flux over four basic circuit variables [1]. De-
pending on the input signal applied, there are two types of memristors: current-controlled
and voltage-controlled [2]. The basic memristor is given in Figure 1.

Using Equations (1) and (2), we can find the value of memristance or memductance.
The properties of the memristor made it useful for non-volatile memory and storage
technology applications as it can theoretically develop multiple states. It can also operate
at a very low voltage level. For the operation of a neural network as a synapse, these
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properties of memristor could be useful. Equations (1) and (2) below show the relationship
between the flux and charge concerning voltage and current [1].

M(q) =
dΨ
dq

(1)

M(q(t)) =
dΨ
dt

.
dt
dq

=
V(t)
I(t)

(2)

Figure 1. (a) The link between the voltage and current is shown by a resistor, voltage, and charge by
a capacitor, and current and flux by an inductor; (b) Memristor basic symbol.

ANNs are interconnected groups of nodes that are composed of artificial neurons. An
artificial neural network is a non-linear and self-adapting computational model that retains
the biological concept of neural networks as human/animal brains [3]. An ANN has three
layers, an input layer, a hidden layer, and the output layer. Every node of the input layer
connects through links with every node of the next preceding layer, called a fully connected
network [4]. It receives inputs, combines them, performs required computations based on a
predefined activation function, and delivers the output. The devices with ANN using two
terminals suffer from non-linearity and asymmetric conductance tuning problems. Due to
this, their scalability was also affected. To solve these issues, an IFG (Ionic Floating Gate)
model memristor-based device will be developed, resulting in a memristor-based neural
network (MNN) from an ANN with memristor features. To implement this, a cadence
Verilog A model will be used along with deep learning concepts. A memristor device
has a simple structure with two terminals, its conductance can be modified by simple
positive and negative pulses while representing synaptic weight [5]. These main functions
of the memristor made it suitable for realizing the synaptic weight in an artificial neural
network. By using a memristor device output as a synapse, a memristive neural network is
expanded to be a multiple layer network with modified memristor-based backpropagation
and gradient descent learning rules [6].

2. Memristor-Based Neural Networks

For the design of the MNN building, the network and weight loading both take a
crucial role. Thereafter, the IFG model will act as a conductor. For the pattern recognition
to be verified by the MNN, a dataset called MNIST is used at input neurons. Additionally,
we use resistors to build a fully connected MNN. The optimization of weights is done by
software [7]. The following Equation (3) is given for the output voltage.

Vout = Rlimit.
Ψ

∑
i=1

VRi.
1

Rij
(3)

Here, Rij is the reciprocal of the conductance(G) which are obtained by Cadence
Virtuoso, these are further used as weights Wij. To train and test the neural network, we



Eng. Proc. 2023, 34, 9 3 of 9

need a massive dataset. Fortunately, the MNIST (modified national institute of standards
and technology) database exists, which contains 60,000 training images and 10,000 testing
images. In this dataset, picture pixels will be normalized by greyscale numbers divided
from 0 to 255 values [8].

2.1. Memristor-Based IFG Model

This Ionic Floating Gate (IFG) memristive device has three terminals and is a com-
bination of a redox transistor and a non-volatile CBM to make it a non-volatile synaptic
memory [9]. A redox transistor was developed in memristor techniques to find a way to
clear limitations such as low writing efficiency, vanishing gradients, and limited accuracy.
It contains three layers. The first layer is PEDOT: which is made of polystyrene sulfonate
i.e., PSS film followed by the Nafion layer. The last layer is the PEI (poly(ethylenimine))
layer, which is partially reduced by PEDOT: PSS film [10]. Connected to this is a conductive
bridge memory that is designed with a layer of Ag in between Pt electrodes. The IFG model
can be used as a memory storage device to memorize the last operation. Memory operates
in two modes: read operation and write operation. Figures 2 and 3 shows the internal view
of the IFG memory [11].

Figure 2. A polymer-based redox transistor.

Figure 3. Complete IFG model showing connections between redox transistor and CBM. (a) Write
operation; (b) read operation.

By taking the above two models as a reference including some modifications in them,
a compact IFG model characterized in Verilog-A code is developed, and importing this
Verilog-A code file to cadence generates the IFG model [12]. The cadence model is shown
in Figure 4. Here, we change the selector position to the electrolyte and middle of the
gate terminal. These are suitable for the design of memristor-based synaptic circuits. The
memristor IFG model conductance values are taken as synaptic arrays. For the recognition
of patterns/images, we use a three-layer artificial network that is fully connected [13]. All



Eng. Proc. 2023, 34, 9 4 of 9

weight connections hold their fixed conductance between the layers of the neural network,
which is stored as IFG’s memristance “G” and mapped into the source-drain conductance of
the synaptic array [14]. Here, the change in conductance is proportional to the flux, its gate
voltage is greater than the threshold voltage, and tunes the gate to the source voltage [15].
The schematic circuit of IFG is shown in Figure 4, which is implemented in cadence.

Figure 4. IFG-model-equivalent circuit. In the IFG model, the voltage applied at the “Gate” terminal
is “Vw”, which is the write voltage, and at the “Drain” terminal is “Vr” which is the read voltage.

The voltage applied at the gate node must be greater than the threshold voltage (Vth).
The voltage level should be ±0.95 V which is given to the gate and source node.

2.2. Weight Setting through Gradient Descent Model and Backpropagation

Specific learning algorithms are useful to hasten the training of neural networks. Here,
we adopt the gradient descent model and backpropagation along with memristor-based
IFG circuit. It takes less than a few seconds to run the ANN [16]. A text-based “Spectra” is
generated for the connections in the ANN circuit with the help of python. The input for
this python code is the database from cadence simulation (Synapse) [17]. First, a normal-
weighted synapse is given from output of the IFG model to the neural networks after getting
the optimized values from the neural networks. Again, these optimized values should be
applied to IFG and observe whether our activation function is optimized. Here, the weights
are optimized by using gradient descent and backpropagation models. The differences
are backpropagated to the neural networks. At epoch 0.68, the accuracy increases by 0.8%
as compared to the traditional method. The circuit-level design and implementation of
gradient and backpropagation learning architectures help to get optimized results. These
results are compared with the original one. The below given Figure 5 shows the simple
operation of ANN.

To achieve image pattern recognition, the optimized values are again given as weighted
synapses in the neural networks along with the images as input. Here, ReLu and Adams
activation functions are used. Wij are weighted neurons, and hij is the summation of input
neurons and weights. The summation is fed to the activation function, which is shown in
Figure 6.
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Figure 5. A simple circuit affirmation from the input layer to the output layer.

Figure 6. Operation of neural networks with IFG memory synapse and implementing image process-
ing using gradient descent algorithm and backpropagation.

3. Results and Analysis

To check the basic memristor characteristics observe Figure 7, the sine function is given
as input harmonic with voltage (V) of 1 V amplitude and 1 Hz frequency (V(t) = V0sin(wt)
for w = 2w0 angular frequency where the V-I characteristics shows with the applied negative
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voltage the current (I) increases, and the current (I) drops with the positive voltage value,
causing a hysteresis loop to emerge. We can also see the linear relationship between the
charge and flux.

Figure 7. MATLAB simulation results of basic Memristor. (a) Input sinewave signal (b) V-Ī character-
istics of memristor, (c) linear relation between charge and flux (d) pinched hysteresis loop (non-linear
characteristics).

In the result given Figure 8, for a positive pulse, the conductance values decrease
for positive input voltage and increase with the negative input voltage i.e., similar to the
characteristics of a memristor. These are the simulation results of the IFG model in cadence,
for which the voltage value is ±0.95 V, and the threshold voltage is 0.4 V. The input voltage
is tuned in between the gate and source, the threshold voltage (Vth) is applied to dc source
i.e., connected in between drain and source.
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Figure 9 below shows the post-simulation values for the optimized values from the
IFG model.

Figure 9. Post-simulation results for optimized parameters.

After applying the optimized values to the IFG device, the same operation is repeated
as it was in previous case but with increased accuracy by 0.8%. Here, the optimized
parameters are X = 0.150 V, and Y = −0.612 V.

Here, Table 1 mention some values of basic memristor showing how the current varies
with a change in input voltage and Tables 2 and 3 mention values of IFG using Cadence
Virtuoso, how conductance varies with a change in input voltage. The various parameters
stated here for basic memristor are current (I), voltage (V), flux(Ψ), and charge (q). For the
IFG model, the Gmax (conductance) values are given as a relationship between voltage
and siemens.

Table 1. Parametric values of the current, voltage, flux and charge for hysteresis curve with reference
to Figure 1.

Measurement # Input Voltage (V) Input Current (I) Flux (Ψ) Charge (q)

1. 0.018 mV 0.022 mA 3.3 × 10−9 (Wb) −2.8 × 10−9 C

2. 0.037 mV 0.044 mA 1.3 × 10−4 (Wb) −1.1 × 10−8 C

3. 0.056 mV 0.066 mA 1.5 × 10−4 (Wb) −2.5 × 10−8 C

4. 0.075 mV 0.088 mA 1.8 × 10−4 (Wb) −4.5 × 10−8 C

Table 2. Parametric value analysis when the input pulse response = (+0.95 V).

Measurement # Input Voltage (V)
Siemens (ns)

Gmax = 1 × 107(X) Gmax = 1 × 107(Y)

1. 0.95 V 0 1.0 × 10−7

2. 0.60 V 2.0 × 10−8 1.0 × 10−7

3. 0.31 V 3.0 × 10−7 1.0 × 10−7

4. 0.19 V 4.02 × 10−6 9.9 × 10−8

5. 0 6.02 × 10−6 9.9 × 10−8
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Table 3. Parametric value analysis when the input pulse response = (−0.95 V).

Measurement # Input Voltage (V)
Siemens (ns)

Gmax = 1 × 10−7(X) Gmax=1 × 10−7(Y)

1. 0 0 1.0 × 10−7

2. −0.19 V 2.0 × 10−8 1.0 × 10−7

3. −0.31 V 3.0 × 10−7 1.0 × 10−7

4. −0.60 V 4.0 × 10−6 1.0 × 10−7

5. −0.95 V 6.0 × 10−6 1.0 × 10−7

By observing Table 4, the traditional model is compared with proposed model, in
traditional model sigmoid function is used and in proposed model ReLu and Adams
functions are used as activation function in neural network with optimized parameters
causes the accuracy of recognition to increased up to 94.6%. So, with the proposed IFG
model, the accuracy increases.

Table 4. Comparison between analytical values and optimized values.

Model # Activation Function Accuracy

Traditional model Sigmoid function 93.8%

Proposed model ReLu function and Adams function 94.6%

4. Conclusions

Artificial neural networks have a vital role in unsupervised deep learning models
to implement applications based on pattern recognition and also in many areas of our
daily lives. This paper provides us with the knowledge of developing an IFG device using
cadence with the characteristics of a memristor-based circuit. To demonstrate the capability
of an IFG device in pattern recognition, the values are optimized using the gradient descent
model and the resulting optimized parameters are compared with the existing parameters.
The testing ability of neural network increased by 0.8% when using the IFG model. Hence,
the accuracy of the original network is 93.8%, which increases to 94.6%. Here, ReLu and
Adams activation helps in faster optimization, and by this result, we can conclude that,
by using IFG-based memristor characteristics in neural networks, one can increase image
recognition accuracy.
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