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Abstract: Imaging-based problem-solving approaches are an exemplary way of handling problems
in various scientific applications. With an increased demand for automation, artificial intelligence
techniques have shown exponential growth in recent years. In this context, deep-learning-based
“learned” solutions have been widely adopted in many applications and are thus slowly becoming
an inevitable alternative tool. It is known that in contrast to the conventional “physics-based”
approach, deep learning models are a “data-driven” approach, where the outcomes are based on data
analysis and interpretation. Thus, deep learning approaches have been applied in several (optical
and computational) imaging-based scientific problems such as denoising, phase retrieval, hologram
reconstruction, and histopathology, to name a few. In this work, we present two deep-learning
networks for 3D image denoising and off-focus voxel removal.
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1. Introduction

Integral imaging (II) is one of the passive three-dimensional (3D) imaging techniques
invented by Gabriel Lippmann in 1908 [1] and has received wide attention, as the appli-
cations of II span several research problems in optical engineering research areas [2–4].
For instance, these include biomedicine, security, autonomous vehicles, and remote sensing,
to name a few [5].

Advanced machine learning (ML) and deep learning (DL) algorithms have been
shown to produce superior results in computer-vision-based applications. Thereafter,
such approaches have also been extended to solve several problems in various other
scientific research areas. In particular, the DL framework has been proven as an important
tool to make automatic decisions, as it solves numerous image-based problems without
much human intervention. Convolution Neural Networks (CNN) are a widely used DL
algorithm for several problems such as image classification [6], autonomous driving [7],
etc. Furthermore, a CNN framework for 3D face recognition and classification in a photon-
starved environment has also been demonstrated [2,8].

2. Integral Imaging

Integral imaging (II) captures a 3D scene in the form of two-dimensional (2D) ele-
mental images (EIs) in addition to the directional information (i.e., angle of propagation).
Notably, 3D scene reconstruction can be achieved in two ways: (i) optical methods and
(ii) computational methods [9]. In computational integral imaging (CII), a geometric ray
back-propagation method is employed which magnifies and superimposes the EIs onto
each other to reconstruct 3D sectional images [10]. Consequently, the objects or 3D points
which are located at the corresponding depth position in an imaging plane are properly
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overlapped and in focus, while the other points at different depth locations do not overlap
properly and hence appear off-focus or defocused. The defocused points in the 3D sectional
image do not convey any valuable information and are therefore redundant. Recently, we
have demonstrated a way to manually identify and remove the off-focus points from a 3D
sectional image [11]. Furthermore, under some special imaging scenarios (e.g., biomedical
imaging and night vision), low light levels or photon-starved illumination conditions may
be encountered. In such cases, since image capturing happens in much darker conditions,
the recorded image looks degraded due to the presence of noise [8,10]. Nevertheless, this
system has been shown to provide a better 3D reconstruction in terms of the PSNR even
with fewer photons, e.g., 100 photons [10].

2.1. Denoising

For image denoising, various methods have been proposed in the literature such as
prediction filtering, transformation-based methods, rank reduction methods, and dictionary
learning methods, to name a few. In addition to these, DL algorithms have also been
applied to the image denoising problem [12]. In this regard, there are two methods that are
commonly followed to train the DL network: (i) supervised and (ii) unsupervised. First, we
discuss supervised learning, where an under-complete autoencoder is used to denoise the
noisy 3D integral (sectional) images with a patch-based approach. In this process, the noisy
input 3D sectional image is divided into multiple patches, which are then used to train
the neural network in a supervised manner (we use clean data as labels). We note that
by using the patch-based approach, the time required to prepare the labeled training data is
greatly reduced. Then, after denoising, the acquired denoised patches can be combined via
an unpatching process. Figure 1 depicts the supervised denoising technique used on our
dataset [13]. To train the network, 20 epochs were employed with a learning rate of 0.001.

Figure 1. Denoised results for supervised learning.

Figure 1c shows the denoised 3D sectional image. We analyzed the performance
of the proposed method quantitatively in terms of the peak signal-to-noise ratio (PSNR).
For instance, the PSNR value given in Figure 1c is an estimation from Figure 1a,c. It is
evident from Figure 1c that the proposed denoising method has a better performance
in terms of the PSNR. Second, we proposed an unsupervised learning method for 3D image
denoising. In this study, we opted for a U-Net architecture [8]. This is an end-to-end, fully
unsupervised denoising approach where the noisy photons in the 3D sectional image are
fed as an input to the network. The major components in the U-Net are encoder and decoder
blocks with skip connection layers [14–16]. In addition to this, skip blocks (SB) were added
to the skip connection strategy in the U-Net architecture to avoid the vanishing gradients
problem. In the training process, the 3D input image is given in the form of patches to the
network. The patched input image is converted to a 1D vector and fed as an input to the
network. After removing the noise, we unpatch the 1D vector and convert it back to the
size of the input data. In our experiments, to test the performance of the proposed method,
we used two 3D objects: a tri-colored ball known as Object 1 in Figure 2a and a toy bird
referred to as Object 2 in Figure 2(a1,a2). Figure 2(b1,b2) are obtained after the TV denoising
method. The proposed method results are given in Figure 2(c1,c2). Notably, we used 20%
of the PCSI patches for validation and 60% of the patches for training purposes. In this
work, 15 epochs were used with a learning rate of 0.001 to train the network. The PSNR
values are shown in Figure 2.
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Figure 2. Denoising results: (a1,b1,c1) represent the noisy photon-counted 3D sectional image, the
TV denoised image, and the result of our proposed denoising method when object 1 is in focus,
respectively, and (a2,b2,c2) represent the noisy photon-counted 3D sectional image, the TV denoised
image, and the result of our proposed denoising method when object 2 is in focus, respectively.

2.2. Off-Focus Removal

Several studies have been conducted to demonstrate the feasibility of combining
photon detection imaging or photon counting imaging (PCI) techniques with conventional
3D integral imaging systems, known as photon counted integral imaging (PCII) [2,9–11,17].
In such systems, it is known that the reconstructed depth images contain both the focused
and off-focus (or out-of-focus) voxels simultaneously (see for instance Figure 3). Off-focus
pixels often look blurred and therefore do not convey clear information about the scene.
Several approaches have been proposed to efficiently remove the off-focus points from
the reconstructed 3D images [4,11]. We note that the existing approaches are subjective as
they involve manual calculation of algorithm parameters such as variance, threshold, etc.,
which is time consuming.

Figure 3. Reconstructed 3D CII sectional images at various depth locations.

Here, we propose a new ensemble Dense Neural Network (DNN) model that is com-
posed of six different DNN models, each trained with its own set of training datasets for re-
moving off-focus points from 3D sectional images. It is known that data pre-processing en-
hances the accuracy of the network; therefore, we used the Otsu thresholding algorithm [18]
to remove the unwanted (and obvious) background from the 3D sectional images. In this
work, we employed an ADAM optimizer to update the weights and bias [13], and the
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standard mean squared error (MSE) was used as the cost function in our training process.
Notably, the proposed ensemble deep neural network was trained (supervised way) using
the conventional 3D sectional images from various depth locations and the corresponding
focused images (labels). We tested the method on a 3D scene that contains two toy cars
and one toy helicopter (see Figure 4) [13]. We used an Intel® Xeon® Silver 4216 CPU
@2.10 GHz (two processors) with 256 GB RAM and a 64-bit operating system to simulate
all the scenarios.

Figure 4. Reconstructed focus only CII sectional images by using the proposed DL network.

3. Conclusions

In summary, we demonstrated that it is possible to use deep learning networks to
solve some of the inherent problems of 3D optical imaging systems. For instance, we have
tackled two important problems that exist in 3D integral imaging systems, i.e., denoising
and off-focus removal, using two different datasets. For our study, it is evident that DL
can be used to solve problems that are too complex to carry out manually. It is therefore
expected that we will further expand our analysis to various other imaging modalities such
as holography, microscopy, etc.
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