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Abstract: The electrocardiogram (ECG) is a biological signal that is frequently employed and plays
a significant role in cardiac analysis. In the analysis of important indicators of the distribution of
patients’ ECG record, the R wave is crucial for both analyzing abnormalities in cardiac rhythm and
determining heart rate variability (HRV). In this article, a brand-new method for classifying and
detecting QRS peaks in ECG data based on artificial intelligence is provided. The integration of the
ECG signal data is proposed using a reduced-order IIR filter design. To construct the reduced-order
filter, the filter coefficient using the min–max method. The main focus of this study is on removing
baseline uncertainty and power line interferences from the ECG signal. According to the results, the
accuracy increased by about 13.5% in comparison to the fundamental Pan–Tompkins approach and
by about 8.1% in comparison to the current IIR-filter-based categorization rules.

Keywords: ECG; interpretation; acquisition; HRV; Pan-Tompkins method; min–max method

1. Introduction

The World Health Organization has determined that heart arrest is the leading cause
of mortality worldwide. Due to the strong emphasis on medicine, preventive measures,
and technology in cardiac health research, investigators have been working to develop
the cardiovascular abilities that are typically used in clinics [1,2]. The majority of heart
pathology can be understood by looking at the ECG signal. Heart rate and ECG signals are
used to evaluate a healthy heart. A cardiac arrhythmia is recognized if an ECG is recorded
from a patient and there is any nonlinearity. Figure 1 depicts an average ECG rhythm.
The PQRS-TU wave’s length and amplitude provide important information regarding
the severity of the heart disease. In the clinical setting, the ECG signal is subjected to a
variety of sounds during acquisition [3]. Important cardiac foundations include frequency
determination, signal superiority, noise, and power line interference (PLI), in addition to
external electromagnetic field intrusion [4,5]. It is advised that the issue of contaminated
noise removal be solved because it improves accuracy and is crucial for the ECG data.
Medical professionals use ECG extensively in the assessment and identification of cardiac
health. Cardiologists frequently use ECG as a diagnostic tool to identify cardiovascular
diseases [6–8]. The early stages of heart disease are crucial because they can lessen abrupt
cardiac failure. Accurate diagnoses require ECG signals of good quality. Electrodes are
used to display and record electrical cardiac activity on the body’s skin [9].

Normal sinus rhythm (NSR), often known as a regular heartbeat, is present in healthy
hearts [10–12]. Atrial depolarization is indicated by P-waves. Regular Q waves indicate
septal depolarization and are an early descending deflection of the P wave. The ECG’s most
common waveform for identifying and detecting early ventricular depolarization is the R
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wave. which shows the late ventricular depolarization [13,14]. Ventricular repolarization
is characterized by the T-wave. The Purkinje fibers that show the most recent ventricular
residuals, or U waves, repolarize.
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handle time- or spatial-domain signals are slow in time [18,19]. Unlike continuous-time 
filters, which can be both active and inactive, discrete-time filters can only be active or 
inactive. This study illustrated the effective use of an optimization-based filter for identi-
fying and categorizing ECG peaks. It participated in both passes. In the first pass, a useful 
lower-order IIR filter design method based on transfer function optimization was sug-
gested for detecting QRS peaks. For peak detection performance improvement, the IIR 
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tering effectiveness for baseline wondering. 

The majority of people today aged between the ages of 40 and 60 experience cardiac-
related health problems. An electrocardiogram is the best way to capture heart impulses 
and identify any abnormalities at an early stage, as demonstrated in Figure 2a, showing 
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tion distortions from the ECG data, numerous authors have put forth various methods. 
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and empirical mode decomposition (EMD) [21]. Blanco-Velasco proposed an ECG en-
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2. Relevant Review Work

As communication technology has developed, wireless communication has become
one of the most popular ways for people to conveniently exchange ideas and thoughts. An
audio noise-reduction system is a technique for eliminating noise from audio transmissions.
Devices for audio noise reduction use two main strategies. The complementary type calls for
carefully removing the audio signal before recording (primarily on tape) [1–5]. The relative
weight that the filter assigns to data samples is determined by these settings. Typically, to
accomplish this, particular frequencies or frequency ranges must be eliminated [6–13]. Con-
trarily, filters have a wide range of extra aims, particularly in the area of image processing.
They do not merely operate in the frequency domain. There is no apparent hierarchy, but
there are many classification systems, all of which overlap in different ways. Filters come in
both linear and nonlinear varieties. The system’s properties include shift invariance, which
is sometimes known as time-variant or time-invariant [14–17]. A filter that operates in a
spatial domain is said to be space invariant. The filters that handle time- or spatial-domain
signals are slow in time [18,19]. Unlike continuous-time filters, which can be both active
and inactive, discrete-time filters can only be active or inactive. This study illustrated the
effective use of an optimization-based filter for identifying and categorizing ECG peaks. It
participated in both passes. In the first pass, a useful lower-order IIR filter design method
based on transfer function optimization was suggested for detecting QRS peaks. For peak
detection performance improvement, the IIR filter and Hilbert transform was used. Three
distinct approaches were tested for their filtering effectiveness for baseline wondering.

The majority of people today aged between the ages of 40 and 60 experience cardiac-
related health problems. An electrocardiogram is the best way to capture heart impulses
and identify any abnormalities at an early stage, as demonstrated in Figure 2a, showing
anormal ECG, and Figure 2b, showingan abnormal ECG. The heart rate variability and QRS
complex are used to classify the abnormalities [20]. For the purpose of removing motion
distortions from the ECG data, numerous authors have put forth various methods. The
aforementioned techniques include wavelet transforms (WTs), adaptive filters (AFs), and
empirical mode decomposition (EMD) [21]. Blanco-Velasco proposed an ECG enhancement
technique to remove baseline drift and noise brought on by high frequencies. On the
other hand, mode mixing, which yields erroneous intrinsic mode functions, is one of the
prevalent problems in empirical mode decomposition.
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3. Objectives of Research

Designing an efficient IIR filter for ECG signals to identify heart problems was the
main focus of the design, analysis, and implementation of the following subsystems.
They are categorized as aspects of the work flow in order to create an effective model for
ECG analysis.

• The first theory is furthered by the implementation of modules such arithmetic circuits
for filters used in ECG signal classification, as well as the construction of parallel prefix
circuits with the least amount of depth utilizing the FPGA hardware prototype.

• The second theory is that by creating an algorithm that can identify the difficult QRS
problem in real-time ECG classification, we may further investigate the effective filter
utilized in ECG signal classification.

4. Pan–Tompkins Peak Detection Approach

There have been numerous strategies created to enhance the effectiveness peak detec-
tion and classification efficiency, which are anticipated to be directly correlated with the
effectiveness of the methods used during the preprocessing step. Thus, two current filtering
techniques—Pan–Tompkins and a 60-order IIR filter, respectively—were used. For peak
identification, the Pan–Tompkins technique was most frequently utilized. However, other
variations of the Pan–Tompkins approach were developed to increase the categorization
effectiveness of the ECG signal using the updated peak detection algorithm.

5. IIR Filter Design

It is recommended to use the optimization method in order to bring down the expected
order of the IIR filter design. A block diagram of the proposed ECG categorization algorithm
can be found in Figure 3a. In the proposed IIR filter, which is a two-stage filter, the pass
band filters and stop band filters are laid out in the manner that is depicted in Figure 3b.

Y(n) = X(n) * H1 * H2, (1)

where H1 is the pass band filter’s transfer function; and an example of a transfer function
for 106 MIT-ECG BIH’s data is provided as

H1 =
0.20346s4 − 0.7131s2 + 0.24566

s4 + 0.5488s3 + 0.4535s2 + 0.1763s + 0.1958
(2)



Eng. Proc. 2023, 34, 24 4 of 12

Eng. Proc. 2023, 34, x 4 of 13 
 

 

 
(a) 

 
(b) 

Figure 3. (a): Image detection and classification methods.(b): Basic IIR filter design procedure in two 
stages. 

Y(n) = X(n) * H1 * H2,  (1)

where H1 is the pass band filter’s transfer function; and an example of a transfer function 
for 106 MIT-ECG BIH’s data is provided as H1 = 0.20346 sସ − 0.7131 sଶ + 0.24566sସ + 0.5488 sଷ + 0.4535 sଶ + 0.1763 s + 0.1958 (2)

The optimization method is suggested to reduce the expected IIR filter design’s or-
der: 

H2 = 0.3201 s16 + 4.517 s15 + 30.45 s14 + 130 s13  +  393.2 s12 + 892.9 s11 + 1574 s10 +  2196 s9+2452 s8 + 2196 s7 + 1574 s6 + 892.9 s5 + 393.2 s4 + 130 s3 + 30.45 s2  + 4.517 s + 0.3201s16 + 12.12 s15 + 70.25 s14 + 258.1 s13 + 672.2 s12 + 1316 s11 + 2004 s10 + 2419 s9+2340 s8 + 1819 s7 + 113 s6 + 559.4 s5 + 214.8 s4 + 62 s3 + 12.7 s2 + 1.649 s + 0.102  (3)

Equations (1) and (2) depict the transfer function for the IIR filter, the pass band filter, 
and the stop band filter, respectively (3). 

5.1. Optimization Methods 
The methods of ECG processing that are used most frequently are discussed below. 

5.1.1. The Low-Pass Differentiation Approach (LPD) 
The total band-pass filter significantly reduces the effects of all sorts of unwanted 

interference and frequency noise. This algorithm chooses the necessary QRS complexes 
based on a set of thresholds and modifies the threshold according to the magnitude of the 
peak. Thethresholds for this algorithm are determined by a human component. The oper-
ator’s threshold-setting expertise may be the main source of error in this Pan–Tompkins 
method. 

  

Figure 3. (a): Image detection and classification methods.(b): Basic IIR filter design procedure in
two stages.

The optimization method is suggested to reduce the expected IIR filter design’s order:

H2 =

0.3201s16 + 4.517s15 + 30.45s14 + 130s13 + 393.2s12 + 892.9s11 + 1574s10 + 2196s9

+2452s8 + 2196s7 + 1574s6 + 892.9s5 + 393.2s4 + 130s3 + 30.45s2 + 4.517s + 0.3201

s16 + 12.12s15 + 70.25s14 + 258.1s13 + 672.2s12 + 1316s11 + 2004s10 + 2419s9

+2340s8 + 1819s7 + 113s6 + 559.4s5 + 214.8s4 + 62s3 + 12.7s2 + 1.649s + 0.102

(3)

Equations (1) and (2) depict the transfer function for the IIR filter, the pass band filter,
and the stop band filter, respectively (3).

5.1. Optimization Methods

The methods of ECG processing that are used most frequently are discussed below.

5.1.1. The Low-Pass Differentiation Approach (LPD)

The total band-pass filter significantly reduces the effects of all sorts of unwanted inter-
ference and frequency noise. This algorithm chooses the necessary QRS complexes based
on a set of thresholds and modifies the threshold according to the magnitude of the peak.
Thethresholds for this algorithm are determined by a human component. The operator’s
threshold-setting expertise may be the main source of error in this Pan–Tompkins method.

5.1.2. Hilbert Transform (HT)

HT use the 90◦ phase angle shift method of each component of the signal h(t). The
Hilbert transform of h(t), using h(t) as its signal representation, can be written as

ĥ =
1
π

∫ ∞

−∞

h(p)
t− p

dp (4)

The HT approach was employed by researchers in Refs. [13,21–23] implemented for
the recognition of ECG QRS.
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5.1.3. Optimum Reduced-Order IIR Filter Design

The basic IIR filter requires 16 orders, as can be seen from the equations above. In
this study, MINMAX optimization is proposed as a way to reduce the order of the transfer
function. Figure 3 shows the image detection and classification methods in sequence.

min x1∈X max x2∈X f(x1, x2) (5)

where X Rdx1 and Y Rdx2 are convex sets, f is a differentiable objective function, and x1 and
x2 are optimization variables. Transfer function coefficients are optimized in a sequential
manner, as demonstrated in the sequential min–max optimization technique.

1. To assess a particular instance, a sample was suggested;
2. It was suggested that an optimization approach be designed for the denoising of the

herring assistance signal using a minimized-order IIR filter;
3. Two different filters must consider the proposed IIR filter before denoising.

6. IIR Filter Design Algorithm

The following list describes each step taken in the suggested algorithm:

i. The ECG data containing occurrences of arrhythmia has 48 channels;
ii. ECG characteristics are defined;
iii. The standard QRS interval (0.098 s) and sampling frequency Fs (500 Hz), i.e., the QRS

(t), are established;
iv. A 60-order IIR high pass filter is used to perform baseline wondering;
v. The best 150 Hz IIR low-pass filter possible is created. An upper and lower cutoff

frequency FL and FH are designed for a pass band Butterworth filter. A stop band is
created (Figure 3b). FL1 and FH1 are the lower and higher cutoff frequencies for the
Butterworth IIR filter;

vi. With a 100-coefficient IIR stop band filter, interference from power lines is eliminated;
vii. The average of the regular and irregular heart rates is determined.

The 30 ECG data, which contain a wide variety of ECG data, were chosen for the
current investigation out of the 48 channels that humans have available. Figure 4 displays
the input ECG data. At a rate of 360 samples per second, the following ECG data were
captured. The ECG information is displayed in Figure 5a–f. The ECG data show the most
erratic variations in these channels. Therefore, it is important to show how well the peak
detection method works against them. These channels were chosen for another reason;
several ECG peak detection techniques already in use, such the ones in Refs. [24–34], also
take them into account.

6.1. Min–Max Optimization Enabled Filter Design

This research suggests a fundamental change to the ECG signal processing procedure
in order to develop an optimal reduced-order IIR filter. In order to achieve smoothing, the
proposed lower-order IIR filter design was used in place of the traditional FIR low-pass
filters. The sequential results for the proposed IIR filter using optimization strategies
for filtering the ECG signal are shown in the last row in results, making it evident that
the projected technique significantly smooths out the artifacts while also maintaining the
characteristics of the QRS peaks.

6.2. Results of Optimized Filter ECG Design

Figure 4 provides an outcome comparison for the suggested IIR filter design. Three
filters are given after the results with a stop band as an IIR filter.

6.3. Simulation Results of QRS Peak Detection in MATLAB

From Figure 5 the proposed filter design, as can be seen, increases the magnitude of
the following data, which are included in this collection: 100, 101, 102, 103, 104, 105, 100,
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6.4. ECG Image Classification

Three distinct ECG classification rules were offered in our article. In the guidelines
for the HRV-based ECG classifications of regular or irregular ECGs are enumerated. When
the method fails to locate a precise beat, a false negative (Fn) is produced. Fns are taken
out of the corresponding annotation case in the MIT-BIH record. An inaccurate beat
outcome is referred to as a false positive (Fp), whereas a true positive (Tp) is indicated by a
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precise beat recognized using the suggested approach. Additionally, a true negative (Tn) is
accurate, and does not include detected beats. From Figures 6 and 7 we can analyze the
ECG signals of the optimized and Hilbert transform filtered signals with respect to R peak
detection efficiency.
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The original ECG signal’s characteristics are preserved as well. With the improved
filtering representation for the 3500 and 2000 initial samples, which is clearly displayed in
Figure 8, further analysis becomes much clearer. The results for the ECG 110 m signal are
shown in Figure 8a. Figure 8b shows a zoomed-in view of the filtering, which makes the
baseline filtering effects for 2000 samples very obvious.
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6.5. Time Domain HRV Parameter Analysis

The proposed ECG classification and peak detection approach includes the examina-
tion of time domain statistical HRV characteristics. Using the same RR intervals that were
used to analyze the ECG signal, several parameters in the time domain were determined.
The following definitions apply to the parameters which this study employed for analysis.
Table 1 displays the statistical results of the measured parameters for the six input ECG
signals using the suggested peak detection method. According to Table 1, SDNN was pro-
duced at its highest level for 228 m channels and at its lowest level for 106 m ECG channels.

Table 1. Comparative analysis for statistics parameters of existing method with proposed method.

Ref. No. Accuracy QRS Peak Detection RR Interval HRV Analysis

[2] 85% No No detected No

[4] 85.6% No No detected No

[6] 88% No No detected YES

[8] 89% No No detected No

[14] 90% YES detected YES

[20] 91% YES detected No

[26] 92.67% YES detected YES

This work 96.87% YES detected YES

Maximum and lowest heart rate evaluations were conducted for the 106 m ECG
channels, respectively. The most effective method for keeping track of the dynamic shift in
self-care under anesthesia may be Poincare plotting. The point on the plot is represented
by the value of each subsequent pair of RR intervals.

From Figure 9 The maximum evaluation of the parameter The minimal RMSSD was
106 m ECG channel for the following maths problems: 102m.mat, 106m.mat, and 102m.ECG.
The following definitions apply to the parameters this study employed for analysis:
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From Figure 10a–d, we are analyzing QRS peaks in signal 102 m, 109 m, 208 m and 228 m.

(a) Standard deviation of NN interval (SDNN): For each pair of RR intervals is used to
define the SDNN.

(b) Root mean square SD (RMSSD):

RMSSD =

√
1/M

(
diff(RR region)2

)
(6)

where M is the RR interval vector’s length, denoted by the symbol RR region.
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(c) NN50 value: The number of R to R intervals that are longer than the 50 ms interval is
known as the NN50 value.
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Figure 10. Results of the suggested optimum IIR filter technique for QRS peak identification for four
ECG signals.

The sequential results for the proposed IIR filter using optimization strategies for
filtering the ECG signal are shown in the last row in Figure 10, making it evident that
the projected technique significantly smooths out the artifacts while also maintaining the
characteristics of the QRS peaks. Figure 11a,b are representing the signal preprocessing of
the data for 101st and 106th ECG samples respectively.
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Figure 11. For collected more samples, ECG signal pre-processing is plotted for the (a) 101st ECG
data and (b) 106th ECG data.

By analyzing of Figure 12 from (a) to (f), the most effective method for keeping track
of the dynamic shift in self-care under anesthesia may be Poincare plotting. The point on
the plot is represented by the value of each subsequent pair of RR intervals.
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7. Conclusions

QRS peak detection helps to detect diseases and heart rate variability (HRV). The
temporal history affects HRV detection. This study proposed a new ECG data classification
and QRS peak detection method. The min–max method optimizes reduced-order filter
coefficients. This study proposes a fuzzy-based ECG classification rule to improve perfor-
mance. The projected ideal filter increases amplitude and maintains ECG characteristics,
thus improving detection. The classification rule increases true positives and decreases
false negatives. This study reported Poincare plot results of ECG analysis. The projected
filter with the optimization method outperformed the other methods, because it achieved
100% precession and improved accuracy by 13.5% over the basic Pan–Tompkins approach
and by 8.1% over the current IIR-filter-based classification rules. We hope to find more
ECG signal peaks using our analysis method. The identification of ECG peaks can be used
for many CVD detection applications.
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