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Abstract: We consider the application of a recently developed hyperspectral broadband phase re-
trieval (HSPhR) technique for spectrally varying object and modulation phase masks at 100 spectral
components. The HSPhR method utilizes advanced techniques such as Spectral Proximity Operators
and ADMM to retrieve complex-domain spectral components from multiple spectral observations.
These techniques filter out noisy observations and strike a balance between noisy intensity observa-
tions and their predicted counterparts, resulting in accurate retrieval of the broadband hyperspectral
phase even for low signal-to-noise ratio components. Both simulation and physical experiments have
confirmed the effectiveness of this approach.

Keywords: hyperspectral imaging; sparse representation; noise filtering; phase imaging

1. Introduction

Hyperspectral imaging (HSI) is a well-known technique for spectral observations. It
is used in various applications, e.g., earth surface remote sensing [1], and medical and
bio-medical diagnostics [2]. HSI retrieves information based on images obtained across a
wide spectrum range with hundreds to thousands of spectral channels. These images are
stacked in 3D cubes, where the first two dimensions are spatial coordinates, and the third
dimension is a spectral channel, represented by either wavenumber or wavelength.

Phase HSI is a special class of HSI where images of interest are complex-valued, and
both phase and amplitude are visualized. It is a promising technique because the amount
of retrieved information is doubled compared to real-valued HSI. It goes directly from
the nature of complex-domain imaging, where each image is complex-valued with phase
and amplitude. Phase brings information about the light delay refracted/transmitted
from/through an object. This delay might be recalculated into valuable information, e.g.,
dry mass [3], refractive index [4], or thickness [5].

Recently, HS digital holography has been developed, which, additionally to conven-
tional holography, is able to recover spectrally resolved phase/amplitude information (e.g.,
Refs. [6,7]). In our previous papers [8–10], the phase HSI formulation was done for the
observation model provided that the parametric model of the object is known and has been
used for phase delay recalculation between spectral channels. As a result, the HS absolute
phases of the object are reconstructed. In the papers [8–10], we used an observation model
where separate diffraction patterns were registered for separate wavelengths and masks.
More close papers are [11,12], where we based our algorithms on the Fourier spectroscopy.
In Ref. [11], we used the model for the object with the connection between the spectral
phases through the thickness. However, the proposed new model for phase HSI is different
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from the Fourier spectroscopy approach as it does not use any instruments for spectral anal-
ysis, such as the harmonic reference beams and precise scanning phase delay stages [6,7].
The spectral resolution for the considered approach is based on the diversity of spectral
properties of the image formation operators and masks [13].

In this paper, we consider applying the developed in Ref. [13] HS phase retrieval
algorithm for an object whose phase and amplitude are characterized on a spectrum with
100 spectral components in simulation and physical experiments.

2. Hyperspectral Phase Imaging

In this section, we briefly describe the HS phase retrieval algorithm developed in
Ref. [13]; for a detailed derivation of the solutions, please follow the pioneering paper [13].

To solve the lensless phase retrieval problem, we utilize random phase masksMt,k ∈
CT×N which, along with propagation operator At,k, encode information about an object
Uo,k into the observations Yt [14]:

Yt = ∑
k∈K
|At,k(Mt,k ◦Uo,k)|2, t = 1, . . . , T, (1)

where Yt ∈ RN , and At,k ∈ CK×N is an image formation operator modeling propagation
of 2D object images from the object plane to the sensor, and ‘◦’ stands for the element-by-
element product of two vectors. For the object of interest, it is the vector Uo,k ∈ CK×N ,
N = nm, where n and m are the width and height of 2D image; k stays for the spectral
variable.The HS phase retrieval is a reconstruction of a complex-valued object Uo,k ∈ CK×N ,
k ∈ K, from these intensity measurements Yt (1). For essential noisy observations with
additive noise εt, observations Yt are complemented by noise εt:

Zt = Yt + εt, t ∈ T. (2)

The total intensity measurement Yt ∈ RN is a sum of intensities from all spectral compo-
nents K, which means that spectral information is severely mixed in the observations.

2.1. HS Phase Retrieval Solution (HSPhR)

Traditionally, the solution Uo,k is found by measuring the mismatch between the
observations and the prediction of the intensities of Ut,k summarized over the spectral
interval. We realize it through a neg-log-likelihood of the observed {Zt}, t ∈ T, as
l({Zt}, ∑k∈K |Ut,k|2), where Ut,k are the complex-valued object wavefronts at the sensor
plane calculated as Ut,k = At,k(Mt,k ◦ Uo,k). In the following text, the curly brackets
signify a group of variables. We use an unconstrained maximum likelihood optimization
to reconstruct the object 3D cube {Uo,k}, k ∈ K, from the criterion of the form:

min
{Uo,k}

l({Zt}, ∑
k∈K
|At,k(Mt,k ◦Uo,k)|2) + freg({Uo,k}), (3)

where a second summand is an object prior. We solve it by alternating direction method of mul-
tipliers (ADMM) [15–18]. Next, Equation (3) is reformulated as a constrained optimization:

min
{Ut,k , Uo,k}

l({Zt}, ∑
k∈K
|Ut,k|2) + freg({Uo,k}), (4)

w.s.t. Ut,k = At,k(Mt,k ◦Uo,k).

We resolve (4) by the unconstrained formulation with the parameter γ > 0:

J = l(Zt, ∑
k
|Ut,k|2) +

1
γ ∑

t,k
||Ut,k − At,k(Mt,k ◦Uo,k)||22 + freg({Uo,k}). (5)
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The second summand is the quadratic penalty for the difference between At,k(Mt,k ◦Uo,k)
and the splitting Ut,k. In the optimization of (5), Ut,k → At,k(Mt,k ◦Uo,k) as γ → 0. The
minimization algorithm iterates min{Ut,k} J with given Uo,k and min{Uo,k} J with given Ut,k:

U(s+1)
t,k = arg min

Ut,k
(l(Zt, ∑

k
|Ut,k|2) +

1
γ ∑

t,k
||Ut,k − At,k(Mt,k ◦Uo,k)

(s)||22), (6)

U(s+1)
o,k = arg min

Uo,k
( freg({Uo,k}) +

1
γ ∑

t,k
||U(s+1)

t,k − At,k(Mt,k ◦Uo,k)||22). (7)

For the iterative solution of (6) and (7), we introduce the Lagrangian variables Λt,k [19]:

U(s+1)
t,k = arg min

Ut,k
J({Ut,k, U(s)

o,k , Λ(s)
t,k }),

U(s+1)
o,k = arg min

Uo,k
J({U(s+1)

t,k , Uo,k, Λ(s)
t,k }), (8)

Λ(s+1)
t,k = Λ(s)

t,k −
1
γ
(U(s+1)

t,k − At,k(Mt,k ◦U(s+1)
o,k ),

where s is the iterative variable.
Minimizing (7) on Uo,k, we replace the regularization term freg({Uo,k, k ∈ K}) with

noise suppression in {Uo,k, k ∈ K}. It is done by Complex Cube Filter (CCF) [20], developed
specifically for 3D hyperspectral complex-domain images. Then, the solution for Uo,k is of
the form

Uo,k =
∑t AH

t,kM
H
t,k(Ut,k −Λt,k)

∑t AH
t,k At,k + reg

, (9)

where the regularization parameter reg > 0 is included if ∑t AH
t,k At,k is singular or ill-

conditioned.
Minimization on Ut,k (6) depends on the noise type in observations {Zt}. We consider

two types of noise: Poisson and Gaussian. For the Gaussian noise, the loss function is

J =
1
σ2 ∑

t
||Zt −∑

k
|Ut,k|2||22 +

1
γ ∑

t,k
||Ut,k − At,k(Mt,k ◦Uo,k)−Λt,k||22. (10)

And for the Poisson noise, considering its multiplicative nature, the loss function is
the following.

J =∑
t

(
χ ∑

k
|Ut,k|2 − Zt log(∑

k
|Ut,k|2χ)

)
+ (11)

+
1
γ ∑

t,k
||Ut,k − At,k(Mt,k ◦Uo,k)−Λt,k||22 + freg({Uo,k}k∈K),

where χ > 0 is a scaling parameter for photon flow, it is proportional to the camera exposure
time and defines the noise level of a signal. The signal-to-noise ratio E{Zt}2/var{Zt} = Ytχ
takes larger values for larger χ.

To minimize min{Ut,k} J, we need to calculate the derivatives with respect to U∗t,k and
then evaluate the necessary minimum conditions by setting the derivative to zero. This
process involves solving a set of complex-valued cubic equations for Gaussian observa-
tions (10):

[ 2
σ2 (∑

k∈K
|Ut,k|2 − Zt) +

1
γ

]
Ut,k =

1
γ
(At,k(Mt,k ◦Uo,k) + Λt,k). (12)
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With a solution in the form

Ût,k =
At,k(Mt,k ◦Uo,k) + Λt,k

1 + 2γ
σ2 (∑k∈K |Ût,k|2 − Zt)

. (13)

For Poisson observations (11), minimization leads to the set of non-linear equations
with respect to Ut,k:

[
χ− Zt

∑k∈K |Ut,k|2
+

1
γ

]
Ut,k =

1
γ
(At,k(Mt,k ◦Uo,k) + Λt,k). (14)

With a solution in the form

Ût,k =
At,k(Mt,k ◦Uo,k) + Λt,k

1 + γχ + γZt
∑k∈K |Ut,k |2

, k ∈ K. (15)

The solutions for min{Ut,k} J can be interpreted as spectral proximity operators (SPO),
generated by minimizing the likelihood items with a quadratic penalty, for both Gaussian
and Poisson:

Ût,k = prox f γ(At,k(Mt,k ◦Uo,k) + Λt,k), (16)

where f stays for the minus-log-likelihood part of J and γ > 0 is a parameter.
These operators solve two problems: First, they extract and separate complex-valued

spectral components Ut,k from the real-valued observations Zt, in which these components
are mixed into the total intensity of the signal. Thus, it provides the spectral analysis of
the signals. Second, the noisy observations Zt are filtered with the power controlled by the
parameter γ compromising Zt and the power of the predicted signal At,k(Mt,k ◦Uo,k) at the
sensor plane. For a detailed derivation of the solutions, follow the pioneering paper [13].

2.2. Developed Algorithm

A block scheme of the algorithm is shown in Figure 1. Complex domain initialization
(Step 1) is required for the considered spectral domain k ∈ K. In our experiments, we
make a 2D random white-noise Gaussian distribution for phase and a uniform 2D positive
distribution on (0,1] for amplitude, which are independent for each k. The Lagrange
multipliers are initialized by zero values, Λt,k = 0. The forward propagation is realized
through the angular spectrum approach and produced for all k ∈ K and t ∈ T (Step 2). The
update of the wavefront at the sensor plane (Step 3) is produced by the proximal operators
(SPO). For the Gaussian observations, this operator is defined by (13), and for the Poisson
observations—by (15). Calculating ∑k∈K |Ût,k|2 requires solving the polynomial equations,
cubic or quadratic, for the Gaussian and Poisson cases, respectively. In Step 4, the Lagrange
variables are updated. The backward propagation of the wavefront from the sensor plane
to the object plane is combined with an update of the spectral object estimate in Step 5.
The sparsity-based regularization by Complex Cube Filter (CCF) [20] is relaxed by the
weight-parameter 0 < β < 1 at Step 6. The iteration number is fixed to n.
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1. Input and initialization:
Zt, At,k, U(0)

o,k ,

Λ(0)
t,k = 0, k ∈ K, t ∈ T

2. Forward propagation:
U(s)

t,k = At,k(Mt,k ◦ Uo,k)
(s)

3. Update U(s)
t,k by SPOs:

Û(s)
t,k = prox f γ(U

(s)
t,k + Λ(s)

t,k )

4. Update Lagrange variables:
Λ(s)

t,k = Λ(s)
t,k − (Û(s)

t,k − U(s)
t,k )

5. Backward propagation and
preliminary object estimation:

U(s)
o,k =

∑t AH
t,k(Û

(s)
t,k −Λ(s)

t,k )

∑t AH
t,k At,k+reg

6.Update of U(s)
o,k by complex domain filtering:

U(s)
o,k = (1 − βs)U

(s)
o,k + βsCCF({U(s)

o,k })

Output:
U(n)

o,k , k ∈ K

Figure 1. HSPhR algorithm. The total number of iterations is n.

3. Numerical Experiments

Simulation experiments are produced for the complex-valued wavefronts obtained
from the propagation of an HS light beam through a thin transparent object. We define the
phase delay of the object as:

ϕk =
φ · λ1

λk

nλk − 1
nλ1 − 1

, k ∈ [1 : K] (17)

where λk is a wavelength of the wavefront (Λ = 550–950 nm) with total number of wave-
lengths K = 100, φ is a basic phase distribution, and nλk is the refractive index of the
optical material of the object. We took the phase distribution for φ as a vortex beam phase
in the range of [−π, π] and amplitude as a logo of Tampere University in the range of
[0, 1], see Figure 2. Spectral amplitude dependence is modeled in accordance with the
spectrum of a supercontinuum white laser (see Section 4), providing a non-uniform spectral
distribution. This non-uniformity strongly complicates the reconstruction process because
of low-intensity spectral components.

Figure 2. Modeled amplitude and basic phase φ of the HS object.
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It is of particular interest to investigate the dependence between the accuracy of
the algorithm and the wavelength number, represented by K, as well as the number of
observations denoted by T. To evaluate the accuracy of the complex-valued reconstruction,
we use the relative error criterion [21]:

ERRORrel = min
ϕ∈[0,2π)

||x̂ ◦ exp(jϕ)− x||22
||x||22

, (18)

where x and x̂ are the true signal and its estimate. If ERRORrel is less than 0.1 the quality
of imaging is high. We calculate ERRORrel for K = [6, 20, 60, 100] and T = [18, 60, 180, 300].
The wavelengths for the varying K are distributed uniformly covering the spectral interval
[550, 950] nm. The number of iterations is fixed to n = 200. The relative errors ERRORrel
obtained in these experiments are shown in Figure 3a. It is shown that ERRORrel is low for
the high number of masks, T, and for high-quality imaging, the needed number of masks
equals the doubled number of wavelengths. Therefore, for the simulation case of K = 100
we took T = 200.

(a) (b)

Figure 3. HSPhR reconstruction relative error maps. (a) Mean relative errors depending on the
number of masks, T, and the number of wavelengths, K. A number of iterations n = 200, SNR = 54 dB.
(b) Dependence of relative errors on the SNR and wavelength.

In Figure 3b, we show ERRORrel dependence on the noise level in the observations,
which is characterized by the signal-to-noise ratio (SNR) in dB and on wavelength with
K = 6 and T = 18. It is seen that for noise levels with SNR bigger than 30 dB ERRORrel is
low and indicates high-quality imaging. It is interesting to note that for high noise levels
(SNR < 30 dB) the shape of ERRORrel corresponds to the inverted spectral distribution
of the modeled illumination: the spectral components with higher values (middle of the
spectrum) provide lower ERRORrel than the spectral components with low values.

In Figure 4, we show a contour ERRORrel map for the HSPhR algorithm for all
spectral components (Y-axis) during iterative calculations (X-axis for iteration number).
High-quality imaging regions (ERRORrel < 0.1) are dark blue on the map with signed
contours ‘0.1’. At first iterations, high-quality imaging appears at only high-intensity
spectral components, but with the growing number of iterations, high-quality spreads to
low-intensity spectral components. Similar behavior for the spectrally dependent object was
demonstrated in Ref. [20], where the developed filter CCF retrieved data from extremely
noisy spectral components. Therefore, it is an illustration of the computational overcoming
of Fellgett’s disadvantage [22] typical for HS observations.

The corresponding reconstruction results after the last iteration (n = 200) are presented
in Figure 5, where object phase and amplitude are spectrally resolved and correspond to
the modeled object from Figure 2.
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Figure 4. Contour ERRORrel map for HSPhR reconstruction. K = 100, T = 200, SNR = 54 dB. Dark
blue regions correspond to high-quality imaging.

Figure 5. Reconstructed amplitudes (a) and phases (b) of the object in simulations. Reconstruction
is performed for K = 100 wavelengths with T = 200 masks and after n = 200 iterations. The
wavelength value is written in each image of the amplitude and corresponds to phase images with
the same location.

4. Experimental Validation

For the experimental validation, we used a setup with a phase-only spatial light
modulator (SLM) and supercontinuum laser source, see Figure 6. A sum of the object Uo,k
and masksMt,k was imaged on SLM, and projected to the ‘Object’ plane by achromatic
lenses ‘L3’ and ‘L4’. The light wavefront then propagates freely on distance d = 2.2 mm
from the ‘Object’ plane to ‘CMOS’, where it is registered as a noisy intensity distribution,
Zt, with t ∈ [1, T]. According to the simulation results, the mask spatial distribution was
modeled as piecewise invariant random with equal probabilities taking one of the following
five values [0, 1, 0, 0.25, 0.75] · pi, for the λ = 520 nm. The object was taken as an image
of a cameraman with 64× 64 pixels, and phase images of a single randomly picked mask
and object are in Figure 7. SLM is the Holoeye phase-only GAEA-2-vis panel, resolution
4160× 2464, pixel size 3.74 µm. The laser is YSL photonics CS-5 with Λ = 470÷ 2400 nm.
To work in the spectral range of the sensor, we limit the laser’s spectral bandwidth to the
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Λ = 470÷ 1000 nm range by a bandpass filter. The camera is a monochrome Blackfly S
board with the matrix Sony IMX264, 3.45 µm pixels, and 2448× 2048 pixels.

Figure 6. Optical setup. The laser is a supercontinuum light source with wavelengths in the range
of 550–1000 nm, L1, L2 are beam-expanding lenses, ‘BS’ is a beamsplitter, ‘SLM’ is a Spatial Light
Modulator, L3, L4 are lenses in a 4f-telescopic system, ‘Object’ is the plane of the projected phase
object and masks from SLM, and CMOS is a camera.

Figure 7. Images of object (a) and mask (b) imaged on SLM in experiments for λ = 520 nm.

The reconstruction results are presented in Figure 8, which we made from T = 300
observations and for K = 100 wavelengths. The number of observations is taken T = 300 to
overcome noise problems since the estimated [23] SNR of observations equals 34 dB, which
is close to the lower limit of HSPhR, estimated in the simulations. Reconstructed amplitude
intensities correspond to the spectral distribution of the used laser with a maximum at
λ = 750 nm, and phase images correspond to the given cameraman image. Image quality
varies from low to high with respect to the intensity distribution of spectral components.

Figure 8. Experimentally reconstructed amplitudes (a) and phases (b) of the object. Reconstruction is
performed for K = 100 wavelengths with T = 300 masks. The wavelength number is written in each
image of the amplitude and corresponds to phase images with the same location.
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5. Conclusions

We have considered an application of an approach for hyperspectral phase retrieval
that utilizes modulation phase masks for the reconstruction of a spectrally variable object
with 100 spectrally dependent components. The approach which is based on a complex
domain version of the ADMM method and spectral proximity operators successfully
solved phase retrieval problem in the considered scenario. The proposed technique is able
to retrieve complex-domain spectral components of an object from noisy observations and
filter out noise by compromising between noisy intensity observations and their predicted
counterparts. In the algorithm, we do not use traditional phase retrieval constraints,
e.g., known aperture or phase connection among spectral components through the object
thickness. With the mask imaged on a transmissive spatial light modulator, the proposed
optical implementation allows a simple lensless configuration, which is significantly simpler
than traditional hyperspectral approaches, as interferometry and holographic imaging. The
proposed approach could potentially be useful in various applications, such as biomedical
imaging, remote sensing, and materials science.
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BS Beam Splitter
CMOS Complementary Metal–Oxide–Semiconductor
CCF Complex Cube Filter
HSI HyperSpectral Imaging
HSPhR HyperSpectral Phase Retrieval
HSDH HyperSpectral Digital Holography
SPO Spectral Proximity Operator
SNR Signal-to-Noise Ratio
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