
Citation: Pamula, P.; Gorthy, D.P.;

Ngangbam, P.S.; Alagarsamy, A.

Verification of SoC Using Advanced

Verification Methodology. Eng. Proc.

2023, 34, 12. https://doi.org/

10.3390/HMAM2-14160

Academic Editor: Vijayakumar

Anand

Published: 13 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Verification of SoC Using Advanced Verification Methodology †

Pranuti Pamula 1, Durga Prasad Gorthy 2, Phalguni Singh Ngangbam 1 and Aravindhan Alagarsamy 1,*

1 Multi-Core Architecture Computation (MAC) Lab, Department of ECE, Koneru Lakshmaiah Education
Foundation, Vaddeswaram 522501, India; shellypranuti@gmail.com (P.P.); npsingh@kluniversity.in (P.S.N.)

2 AMD, Hyderabad 500081, India; prasad.gorthy@gmail.com
* Correspondence: drarvindhan@kluniversity.in
† Presented at the International Conference on “Holography Meets Advanced Manufacturing”, Online,

20–22 February 2023.

Abstract: The semiconductor industry has evolved significantly since its founding in 1950. Transistors
and diodes are the primarily used electronic devices, but advancements in technology have led to
more complex semiconductor devices, from printed circuit boards to multimillion gate design, i.e.,
a System on Chip (SoC) design. Almost 70–80 percent of the total SoC design effort is aimed at
functional verification. In this paper, verification of an interconnect block in a processing system is
presented. Trace monitoring of the transactions on the Advanced eXtensible Interface (AXI) interface
of the interconnect is performed by programming different operational pointers and filters. Results
were simulated from Synopsys—a Verilog Compiler Simulator (VCS) tool-2022v (Hyderabad, India).

Keywords: semiconductor industry; SoC; functional verification; AXI interface

1. Introduction

In recent years, the complexity of System on Chip (SoC) design has increased. The
higher number of components in a single chip makes the verification of any SoC design
very critical. Hence, a proper methodology for any SoC or IP is required [1–4]. Despite
all the advancements, there is a significant gap between the modern technology and the
verification needs of new industries. This situation is becoming worse regarding to the
change in design as there is rapid movement towards the era of automated vehicles,
smart cities and the Internet of Things (IoT) [5–8]. Moreover, these electronic devices
collect personal information such as location, sleep patterns, health, etc., which is stored
in the billions of computer devices that operate without pause and even the surrounding
environment may have compromised or malicious devices. As the system design and
security have transformed to adapt themselves, so must the verification adjust as well.
Regarding the growing requirements for the design and the time to market, the duration
has shrunk from years required for verification and hard work to less than a year. This
aggressive shrinking implies shorter timespan for a thorough design review, which may
cause misunderstanding of the requirements and a consequent increase in errors. Therefore,
verification is expected to handle more errors in design with even less time duration.

Problem Statement

Verification of an SoC design is carried out at different stages with a different approach
as per design specifications. With interconnect as a common ground for all the rest of the
design to interact, there are many functionalities to be verified and connectivity checks
to be conducted. Many tests need to be developed for the verification of an interconnect.
Connectivity checks at the interface interconnect being the most important requires detailed
analysis and thorough research of the design specification. Track sourcing from the primary
interface should reach the desired secondary interface without any loss in the data packets,
such checks between multiple primary and secondary interfaces are carried out by initiating

Eng. Proc. 2023, 34, 12. https://doi.org/10.3390/HMAM2-14160 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/HMAM2-14160
https://doi.org/10.3390/HMAM2-14160
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0003-1621-8939
https://doi.org/10.3390/HMAM2-14160
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/HMAM2-14160?type=check_update&version=1

Eng. Proc. 2023, 34, 12 2 of 8

write operations to a register space of the secondary interface and expecting to read the
same data without any errors. These transactions can be self-tested using System Verilog
assertions and checkers. The other functionalities of the design can be verified with a
variety of approaches.

2. Materials and Methods

Deep sub-micron effects complicate design closure for very large designs [9]. A System
on Chip (SoC) is an IC (Integrated Circuit) which is designed by integrating multiple
standalone VLSI designs that provide complete functionality for an application. SoC
integrates a microprocessor with advanced peripherals such as a coprocessor, memory
elements, GPU, Wi-Fi module, etc. This definition of SoC emphasizes the predesigned
models of complex design functions which are known as cores. These can be intellectual
property blocks, virtual components, macros, etc. In SoC, in-house library cores may be
used along with some cores designed by other design houses known as intellectual property.
Because of the use of the embedded software and the increasing integration of cores, the
design complexity of SoC has increased dramatically over the past few years. In addition,
it is still expected to grow at a very fast rate. According to Moore’s law, silicon complexity
quadruples every three years [10]. This complexity accounts for the huge size of cores and
shrinking geometry.

There are three types of SoCs that are totally distinguishable, i.e., a SoC built around a
micro-controller, a SoC built around a microprocessor, and a programmable SoC, where
the internal elements are not predefined and can be programmed in any essential manner.
These kinds of SoCs are also known as FPGAs or complex programmable logic devices. In
all SoC designs, predefined cores are the essential components. The flexibility of the cores
depends on the form in which they are available. The trade-off between these cores is in
terms of performance, power, speed, area, flexibility, cost, time to market, etc. [11].

2.1. Architectural Overview

The SoC architecture integrates a feature of a dual- or single-core microprocessor
core-based processing system and a Xilinx programmable logic in a single device. It is
built on state-of-the-art technology that offers high performance and low power [12]. The
multi-core processors are the heart of the PS, which also includes on-chip memory, external
memory interfaces, and a rich set of I/O peripherals.

SoC offers the flexibility and scalability of an FPG, while providing performance,
power, and ease of the use. The range of devices in the family of SoC enables the designers
to find cost-sensitive as well as high-performance applications from a single platform using
standard tools.

Functional blocks of SoC are shown in Figure 1. The processing system and pro-
grammable logic both operate on different power domains. This configuration enables the
users to manage the power utilization of PL if required.

The SoC is composed of two major functional blocks:

• Processing system;
• Programmable logic.

Processing System (PS)

• Application processor unit: The application processor unit offers high performance
and standard-compliant capabilities. The runtime configurations allow the single
processor or asymmetrical or symmetrical multiprocessing setups. It is a 32 Kb instruc-
tion set with a 32 Kb cache [12]. In addition, a sharable 512 Kb cache with parity is
available. An accelerator coherency port from PL to PS, which is a 64 b AXI slave port,
provides a connection between the processing system and programmable logic. APU
also contains 256 Kb of on-chip SRAM which is a dual-ported memory. It is accessible
to CPUs, PL, and central interconnects. There are four DMA (direct memory access)
channels for PS to copy data from CPU memory to/from other system memories.

Eng. Proc. 2023, 34, 12 3 of 8

• Memory interfaces: The memory interface of PS includes multiple memory tech-
nologies. It consists of DDR controllers with 16 b and 32 b widths. This uses up to
73 dedicated pins of PS [12]. The DDR can be powered down as per the idle periods of
PS. Transaction scheduling is performed for optimizing data bandwidth and latency.
The efficiency of memory is increased by 90% by advanced re-ordering engines and
increased by 80% with random read/write operations. Collision check monitors the
memory for any write–read collisions and the write buffer is used in that case. The
primary boot device can be a NAND controller or a parallel SRAM/NOR controller.

• I/O peripherals: The input–output peripherals are a collection of industry standard in-
terfaces for communication with external systems. Programmable interrupt controllers
on the GPIO are used for a status read of raw and masked interrupts. These interrupts
are positive-edge, negative-edge, either–edge, high-level, or low-level sensitive. A
USB 2.0 high-speed on-the-go (OTG) dual-role USB host controller and USB device
controller operations are performed using a single hardware. This configuration
uses MIO pins only. The USB host controller registers, and data structures are EHCI
compatible [12]. It supports up to 12 endpoints.

• Interconnect: The SoC uses several interconnect technologies that are optimized for
specific communication requirements of the functional blocks. The SoC interconnect
is divided into two parts: one is based on the high-performance data path of AXI on
the PS interconnect and the other is based on PS-PL interfaces. The PS interconnect
consists of an OCM interconnect and a central interconnect. The OCM interconnect
provides access to 256 Kb of memory from the central interconnect and PL. The CPU
and ACP interfaces have the lowest latencies to OCM through the SCU. The central
interconnect is a 64-bit interconnect. It connects the input–output peripherals and
the DMA controller to the DDR memory controller, on-chip RAM, and the AXI-GP
interfaces for PL logic. It also connects the local DMA units in Ethernet, USB, and
SD/SDIO controllers to the central interconnect. It also connects the PS master to
the IOP.

Eng. Proc. 2023, 34, 12 3 of 8

Figure 1. SoC architecture.

Processing System (PS)
• Application processor unit: The application processor unit offers high performance

and standard-compliant capabilities. The runtime configurations allow the single
processor or asymmetrical or symmetrical multiprocessing setups. It is a 32 Kb in-
struction set with a 32 Kb cache [12]. In addition, a sharable 512 Kb cache with parity
is available. An accelerator coherency port from PL to PS, which is a 64 b AXI slave
port, provides a connection between the processing system and programmable logic.
APU also contains 256 Kb of on-chip SRAM which is a dual-ported memory. It is
accessible to CPUs, PL, and central interconnects. There are four DMA (direct
memory access) channels for PS to copy data from CPU memory to/from other sys-
tem memories.

• Memory interfaces: The memory interface of PS includes multiple memory technol-
ogies. It consists of DDR controllers with 16 b and 32 b widths. This uses up to 73
dedicated pins of PS [12]. The DDR can be powered down as per the idle periods of
PS. Transaction scheduling is performed for optimizing data bandwidth and latency.
The efficiency of memory is increased by 90% by advanced re-ordering engines and
increased by 80% with random read/write operations. Collision check monitors the
memory for any write–read collisions and the write buffer is used in that case. The
primary boot device can be a NAND controller or a parallel SRAM/NOR controller.

• I/O peripherals: The input–output peripherals are a collection of industry standard
interfaces for communication with external systems. Programmable interrupt con-
trollers on the GPIO are used for a status read of raw and masked interrupts. These
interrupts are positive-edge, negative-edge, either--edge, high-level, or low-level
sensitive. A USB 2.0 high-speed on-the-go (OTG) dual-role USB host controller and

Figure 1. SoC architecture.

Eng. Proc. 2023, 34, 12 4 of 8

2.2. Connectivity Check in Interconnect

Interconnect consists of several input and output interfaces. Each of the interfaces
reaches out to different slave modules or input from connected masters. The connectivity
checks are essential at every interface. This is performed to verify the transactions that
are intended to pass through a particular interface are reaching without any loss of data
packets. Such checks are carried out by initiating from a master to register space of slave
and expect to read exactly the same data without any errors. This behavior of the design is
verified by using the system Verilog Assertions and data comparison using C or System
Verilog [13]. The analysis of the simulated result is as important as defining the sequence
of the test. The occurrence of an error or unexpected behavior at the output is required to
be traced back to the source of the issue. A large amount of time is spent on debugging of
simulated results. One of the test scenarios generated to verify connectivity at an interface
is as discussed. The simulation result for verification of an AXI interface and APB interface
are shown in the waveforms.

3. Results

Verification of blocks is of utmost importance. This is achieved by programming
a testbench to monitor outgoing traffic with the help of pointers. This outgoing traffic
can contain a large bandwidth of data signals. These outgoing data can be filtered as
per the requirement and a trace can be generated for only those selected data signals or
transactions. The pointers required to monitor the interface are programmed using a set of
control registers. These configurations are shown in Figure 2.

Eng. Proc. 2023, 34, 12 4 of 8

USB device controller operations are performed using a single hardware. This con-
figuration uses MIO pins only. The USB host controller registers, and data structures
are EHCI compatible [12]. It supports up to 12 endpoints.

• Interconnect: The SoC uses several interconnect technologies that are optimized for
specific communication requirements of the functional blocks. The SoC interconnect
is divided into two parts: one is based on the high-performance data path of AXI on
the PS interconnect and the other is based on PS-PL interfaces. The PS interconnect
consists of an OCM interconnect and a central interconnect. The OCM interconnect
provides access to 256 Kb of memory from the central interconnect and PL. The CPU
and ACP interfaces have the lowest latencies to OCM through the SCU. The central
interconnect is a 64-bit interconnect. It connects the input–output peripherals and the
DMA controller to the DDR memory controller, on-chip RAM, and the AXI-GP inter-
faces for PL logic. It also connects the local DMA units in Ethernet, USB, and SD/SDIO
controllers to the central interconnect. It also connects the PS master to the IOP.

2.2. Connectivity Check in Interconnect
Interconnect consists of several input and output interfaces. Each of the interfaces

reaches out to different slave modules or input from connected masters. The connectivity
checks are essential at every interface. This is performed to verify the transactions that are
intended to pass through a particular interface are reaching without any loss of data pack-
ets. Such checks are carried out by initiating from a master to register space of slave and
expect to read exactly the same data without any errors. This behavior of the design is
verified by using the system Verilog Assertions and data comparison using C or System
Verilog [13]. The analysis of the simulated result is as important as defining the sequence
of the test. The occurrence of an error or unexpected behavior at the output is required to
be traced back to the source of the issue. A large amount of time is spent on debugging of
simulated results. One of the test scenarios generated to verify connectivity at an interface
is as discussed. The simulation result for verification of an AXI interface and APB interface
are shown in the waveforms.

3. Results
Verification of blocks is of utmost importance. This is achieved by programming a

testbench to monitor outgoing traffic with the help of pointers. This outgoing traffic can
contain a large bandwidth of data signals. These outgoing data can be filtered as per the
requirement and a trace can be generated for only those selected data signals or transac-
tions. The pointers required to monitor the interface are programmed using a set of control
registers. These configurations are shown in Figure 2.

Figure 2. Configuration of pointers.

When pointers are configured and set to monitor a port, the filters are activated to
filter out the required amount of data. The filters are configured as per the address or ID
of the transactions and later subdivided by control/instruction trace, data trace, bus trace,
interface trace, fabric trace, etc. Then, a burst of AXI transactions is sent to the observed
port. A set of such transactions is displayed in Figures 3–5.

Figure 2. Configuration of pointers.

When pointers are configured and set to monitor a port, the filters are activated to
filter out the required amount of data. The filters are configured as per the address or ID
of the transactions and later subdivided by control/instruction trace, data trace, bus trace,
interface trace, fabric trace, etc. Then, a burst of AXI transactions is sent to the observed
port. A set of such transactions is displayed in Figures 3–5.

Eng. Proc. 2023, 34, 12 5 of 8

Figure 3. Write operation of the AXI burst transfer.

Figure 4. Read operation of the AXI burst transfer.

Figure 5. Read response on the AXI burst transfer.

The write and read burst transfers sent to the AXI bus are shown in Figure 6. The
above image shows traffic sent to the observed port. These transactions are then observed
with the help of pointers. The transactions on the interface are filtered and sent out to the
counter, to count the number of transaction hits. The output is thus observed and analyzed
for verification.

Below are the waveforms depicting the counter values at the output. The output of
the write request pointer is shown in Figure 7.

Figure 6. Burst traffic on the AXI interface.

Figure 3. Write operation of the AXI burst transfer.

Eng. Proc. 2023, 34, 12 5 of 8

Eng. Proc. 2023, 34, 12 5 of 8

Figure 3. Write operation of the AXI burst transfer.

Figure 4. Read operation of the AXI burst transfer.

Figure 5. Read response on the AXI burst transfer.

The write and read burst transfers sent to the AXI bus are shown in Figure 6. The
above image shows traffic sent to the observed port. These transactions are then observed
with the help of pointers. The transactions on the interface are filtered and sent out to the
counter, to count the number of transaction hits. The output is thus observed and analyzed
for verification.

Below are the waveforms depicting the counter values at the output. The output of
the write request pointer is shown in Figure 7.

Figure 6. Burst traffic on the AXI interface.

Figure 4. Read operation of the AXI burst transfer.

Eng. Proc. 2023, 34, 12 5 of 8

Figure 3. Write operation of the AXI burst transfer.

Figure 4. Read operation of the AXI burst transfer.

Figure 5. Read response on the AXI burst transfer.

The write and read burst transfers sent to the AXI bus are shown in Figure 6. The
above image shows traffic sent to the observed port. These transactions are then observed
with the help of pointers. The transactions on the interface are filtered and sent out to the
counter, to count the number of transaction hits. The output is thus observed and analyzed
for verification.

Below are the waveforms depicting the counter values at the output. The output of
the write request pointer is shown in Figure 7.

Figure 6. Burst traffic on the AXI interface.

Figure 5. Read response on the AXI burst transfer.

The write and read burst transfers sent to the AXI bus are shown in Figure 6. The
above image shows traffic sent to the observed port. These transactions are then observed
with the help of pointers. The transactions on the interface are filtered and sent out to the
counter, to count the number of transaction hits. The output is thus observed and analyzed
for verification.

Eng. Proc. 2023, 34, 12 5 of 8

Figure 3. Write operation of the AXI burst transfer.

Figure 4. Read operation of the AXI burst transfer.

Figure 5. Read response on the AXI burst transfer.

The write and read burst transfers sent to the AXI bus are shown in Figure 6. The
above image shows traffic sent to the observed port. These transactions are then observed
with the help of pointers. The transactions on the interface are filtered and sent out to the
counter, to count the number of transaction hits. The output is thus observed and analyzed
for verification.

Below are the waveforms depicting the counter values at the output. The output of
the write request pointer is shown in Figure 7.

Figure 6. Burst traffic on the AXI interface. Figure 6. Burst traffic on the AXI interface.

Below are the waveforms depicting the counter values at the output. The output of
the write request pointer is shown in Figure 7.

Eng. Proc. 2023, 34, 12 6 of 8

Figure 7. Write request transfers.

The output of the write response pointer is shown in Figure 8.

Figure 8. Write response transfers.

The output of the read request pointer is shown in Figure 9.

Figure 9. Read request transfers.

The output of the read response pointer is shown in Figure 10.

Figure 7. Write request transfers.

Eng. Proc. 2023, 34, 12 6 of 8

The output of the write response pointer is shown in Figure 8.

Eng. Proc. 2023, 34, 12 6 of 8

Figure 7. Write request transfers.

The output of the write response pointer is shown in Figure 8.

Figure 8. Write response transfers.

The output of the read request pointer is shown in Figure 9.

Figure 9. Read request transfers.

The output of the read response pointer is shown in Figure 10.

Figure 8. Write response transfers.

The output of the read request pointer is shown in Figure 9.

Eng. Proc. 2023, 34, 12 6 of 8

Figure 7. Write request transfers.

The output of the write response pointer is shown in Figure 8.

Figure 8. Write response transfers.

The output of the read request pointer is shown in Figure 9.

Figure 9. Read request transfers.

The output of the read response pointer is shown in Figure 10.

Figure 9. Read request transfers.

The output of the read response pointer is shown in Figure 10.

Eng. Proc. 2023, 34, 12 7 of 8

Figure 10. Read response transfers.

• Green line: Transaction of 1.
• Blue line: Transaction of 0.
• Yellow line: Brust Transactions.
• Purple line: Marker.
• Red line: transaction of address is represented.

4. Conclusions

SoC verification is a complex and never-ending task. The process can be faster and
more efficient when proper programming and simulation tools are used. Verification can
be achieved with prior knowledge of SoC architecture and RTL design, where the envi-
ronment is built using UVM and System Verilog. All the parts of the testbench can be
reused easily for different designs. This reduces verification complexity and improves ef-
ficiency. The design functionalities are verified by using assertions and checkers along
with the basic test sequence.

The connectivity of an interconnect block with several interfaces is verified success-
fully. The performance monitoring at various interfaces of interconnect is successfully
completed. The simulation results are compared and evaluated by a self-checking
testbench. This reduces extra efforts to locate the problem or issue in the design, as it lo-
cates the exact timestamp and points at the exact line of the RTL code where a violation
has occurred.

Author Contributions: A.A.: Conceptualization, methodology, software, investigation, writing—
original draft, funding acquisition, project administration; P.P.: Methodology, formal analysis, writ-
ing—original draft; D.P.G.: Investigation, software, resources; P.S.N.: Supervision. All authors have
read and agreed to the published version of the manuscript.

Funding: A.A.: P.P.: P.S.N.: The first authors thanks DST-FIST for funding the lab facility for sup-
porting this research under grant number SR/FST/ET-II/2019/450.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data was used for the research described in the article.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

Figure 10. Read response transfers.

• Green line: Transaction of 1.
• Blue line: Transaction of 0.
• Yellow line: Brust Transactions.
• Purple line: Marker.
• Red line: transaction of address is represented.

Eng. Proc. 2023, 34, 12 7 of 8

4. Conclusions

SoC verification is a complex and never-ending task. The process can be faster and
more efficient when proper programming and simulation tools are used. Verification can be
achieved with prior knowledge of SoC architecture and RTL design, where the environment
is built using UVM and System Verilog. All the parts of the testbench can be reused easily
for different designs. This reduces verification complexity and improves efficiency. The
design functionalities are verified by using assertions and checkers along with the basic
test sequence.

The connectivity of an interconnect block with several interfaces is verified successfully.
The performance monitoring at various interfaces of interconnect is successfully completed.
The simulation results are compared and evaluated by a self-checking testbench. This
reduces extra efforts to locate the problem or issue in the design, as it locates the exact
timestamp and points at the exact line of the RTL code where a violation has occurred.

Author Contributions: A.A.: Conceptualization, methodology, software, investigation, writing—
original draft, funding acquisition, project administration; P.P.: Methodology, formal analysis,
writing—original draft; D.P.G.: Investigation, software, resources; P.S.N.: Supervision. All authors
have read and agreed to the published version of the manuscript.

Funding: A.A.: P.P.: P.S.N.: The first authors thanks DST-FIST for funding the lab facility for
supporting this research under grant number SR/FST/ET-II/2019/450.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data was used for the research described in the article.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Ghosh, P.; Srivastava, R. Case Study: SoC Performance Verification and Static Verification of RTL Parameters. In Proceedings

of the 2019 20th International Workshop on Microprocessor/SoC Test, Security and Verification (MTV), Austin, TX, USA,
9--10 December 2019; pp. 65–72.

2. Huang, X.; Liu, L.; Li, Y.; Liu, L.; Huang, X. FPGA Verification Methodology for SiSoC Based SoC Design. In Proceedings of the
2011 IEEE International Conference of Electron Devices and Solid-State Circuits, Tianjin, China, 17–18 November 2011.

3. Bai, L.; Fan, X.; Zhang, M.; Sun, L. A VMM/FPGA Co-verification Method for “Longtium Stream” Processor. In Proceedings of
the 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013), KunMing, China,
5–8 August 2013.

4. Podivinsky, J.; Simkova, M.; Cekan, O.; Kotasek, Z. FPGA Prototyping and Accelerated Verification of ASIPs. In Proceedings
of the 2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems, Belgrade, Serbia,
22–24 April 2015; pp. 145–148.

5. Noami, A.; Alahdal, A.; Kumar, B.P.; Chandrasekhar, P.; Safi, N. High Speed Data Transactions for Memory Controller Based
on AXI4 Interface Protocol SoC. In Proceedings of the 2021 International Conference on Advances in Electrical, Computing,
Communication and Sustainable Technologies (ICAECT), Bhilai, India, 19–20 February 2021.

6. Seongyoung, S.; Moon, J.; Jun, S. FPGA-Accelerated Time Series Mining on Low-Power IoT Devices. In Proceedings of the 2020
IEEE 31st International Conference on Application-specific Systems, Architectures and Processors (ASAP), Manchester, UK,
6–8 July 2020.

7. Noami, A.; Kumar, B.P.; Paidimarry, C.S. Power Optimization for Multi-Core Memory Controller Using Intelligent Clock Gating
Technique. J. Electr. Electron. Eng. 2022, 15, 129–137.

8. Gophane, K.C.; Bhaskar, P.C. FPGA Based Adaptive IoT Framework for Distinct Applications. In Proceedings of the 2018 Fourth
International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018.

9. Accounting For Very Deep Sub-Micron Effects in Silicon Models. Available online: https://www.eetimes.com/accounting-for-
very-deep-sub-micron-effects-in-silicon-models/ (accessed on 15 February 2023).

10. Tuomi, I. The lives and death of Moore’s Law. First Monday 2002, 7. [CrossRef]
11. Noguera, J.; Badia, R.M. System-level power-performance trade-offs in task scheduling for dynamically reconfigurable architec-

tures. In Proceedings of the 2003 International Conference on Compilers, Architecture and Synthesis for Embedded Systems, San
Jose, CA, USA, 30 October–1 November 2003.

https://www.eetimes.com/accounting-for-very-deep-sub-micron-effects-in-silicon-models/
https://www.eetimes.com/accounting-for-very-deep-sub-micron-effects-in-silicon-models/
https://doi.org/10.5210/fm.v7i11.1000

Eng. Proc. 2023, 34, 12 8 of 8

12. Zynq-7000 SoC Data Sheet: Overview. Available online: https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview
(accessed on 15 February 2023).

13. Chris, S. System Verilog for Verification: A Guide to Learning the Testbench Language Features; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview

	Introduction
	Materials and Methods
	Architectural Overview
	Connectivity Check in Interconnect

	Results
	Conclusions
	References

