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Abstract: Polarization has a profound impact on image quality and visual perception. For instance,
polarization provides a new perspective on seeing an object which is otherwise obscured, low contrast
or not measurable by conventional imaging methods. In this paper, we discuss a possible extension
of the digital holography (DH) to the polarization domain, and the technique is referred to as digital
polarization holography (DPH). The basic principle of the DPH is described and some of our recent
contributions on quantitative vectorial imaging are covered. We also discuss and highlight the
potential of combining speckle field illumination with DPH for high-resolution vectorial imaging.
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1. Introduction

Holography uses the principle of interference to record and reconstruct complex
valued objects. The availability of high-quality detectors and computational facilities has
popularized holography through digital holography (DH), where a hologram is digitally
recorded and a reconstruction of the hologram is implemented by numerical methods [1].
DH provides a quantitative information of the complex fields, i.e., amplitude and phase.
This is advantageous in the context of real-time live quantitative imaging, digital depth
focusing, 3D, and label-free nondestructive imaging. The availability of array detectors
and reconstruction algorithms have further revolutionized holography. Different DH
schemes have been developed, and significant among them are in-line, off-axis, and phase-
shifting holography. Off-axis holography requires angularly separated object and reference
beams in an interferometric design, and this geometry avoids the twin image problem in the
reconstruction. A concept of preserving information in the interference fringes has also been
tested for self-luminous or incoherent objects. Significant techniques among the incoherent
holography are coherence holography [2] and Fresnel incoherent correlation holography
(FINCH) [3]. Coherence holography is an unconventional approach, wherein the complex
valued object is reconstructed as a spatial distribution of the complex coherence function.
In another development, DH methods are used to image 2D and 3D objects located behind
the random scattering medium [4–6].

DH has emerged as a unique technique to quantitatively measure the wavefront of
light. A DH combined with microscopy, called digital holographic microscopy (DHM) is
nowadays widely used for a wide range of applications [1]. However, a complete descrip-
tion of the wavefront needs the inclusion of the polarization vector in its measurement and
analysis [7]. Polarization analysis is important in fields such as stress analysis, bio-medical
imaging, chemistry and so on. Polarization states, a significant parameter to describe light
matter interactions, have been critical and significant in contrast enhancement, and high-
light specific cell structures which are otherwise missing in the scalar imaging. Therefore,
polarization imaging is considered to be a promising and futuristic tool, as it is capable of
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revealing the order at a molecular scale that is usually hidden to the conventional micro-
scopes. Lohman was the first to propose the issue of the total recording and reconstruction
of the wavefront by including the polarization vector in the wavefront reconstruction [7].
The extension of holography to the polarization domain is possible by recording and re-
constructing two holograms of the orthogonal polarization components [8–12]. In order
to expand polarization holography to the light with arbitrary coherence, it is desirable
to examine the interference using the Stokes parameters of the light [9,10]. A practical
challenge in polarization holography is the recording and reconstruction of four holograms
which correspond to all four Stokes parameters. This challenge has been attempted by
using random scattering as a real-time recording plane and reconstructing the polarization
vector by two-point complex correlations of the random light field. Polarization imaging of
three-dimensional imaging using phase-shifting holography is also possible.

In this paper, we discuss polarization interference fringes and their role in the recording
and reconstruction of the complete wavefront. To demonstrate the usefulness of the
polarization fringes in the quantitative and spatially resolved imaging, beyond conventional
DH, we perform the recording and reconstruction of the polarization holograms with a
generic light source of various correlations. We discuss different experimental designs of
digital polarization holography (DPH) and some of our recent contributions on quantitative
vectorial imaging. A new approach in the polarization domain of holograph, called speckle-
field digital polarization holographic microscopy (SDPHM) is also discussed. The idea is
to use a random pattern (rather than a uniform field) for illumination of the sample and
thereby recover the high-resolution polarization features in comparison to the scalar DPH.

2. Polarization Holograms
2.1. Digital Polarization Holography

Consider the recording geometry represented in Figure 1. This figure shows the
recording of a hologram by interference of the waves emerging from two sources, i.e., the
object and reference. The vectorial nature of the light waves, on the plane and vertical to
the plane, are represented by a green arrow and black circle. Here, the arrow represents
the polarization vector on the plane and black circle represents a polarization vector
perpendicular to this plane. The propagation of the light field from the source to the
observation is represented as

Os(r) =
∫

Os(ρ)G(r− ρ)dρ (1)

Rs(r) = exp[iαr] (2)

where Os(r) and Os(ρ) represent a realization of the object field at the observation and
source plane, respectively, and s = x, y represents the orthogonal polarization components;
and G(r− ρ) is the propagation kernel to accommodate diffraction from the source position
(ρ) to the spatial position (r) at the observation plane. A reference beam Rs(r) is considered
to be uniform with a linear phase of spatial frequency α.
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2.2. Recording and Reconstruction of the Polarization Hologram

A single realization of orthogonally polarized components, at the observation plane,
are represented as

Ex(r) = Ox(r) + R(r) (3)

Ey(r) = Oy(r) + R(r) (4)

Stokes fringes can be obtained from the orthogonal polarization components as

So(r) = 〈E∗x(r)Ex(r)〉+
〈

E∗y(r)Ey(r)
〉

(5)

S1(r) = 〈E∗x(r)Ex(r)〉 −
〈

E∗y(r)Ey(r)
〉

(6)

S2(r) =
〈

E∗x(r)Ey(r)
〉
+
〈

E∗y(r)Ex(r)
〉

(7)

S3(r) = i
[〈

E∗y(r)Ex(r)
〉
−
〈

E∗x(r)Ey(r)
〉]

(8)

where < . > angular bracket represent the ensemble average to evaluate the statistical
properties of the light. Four Stokes parameters encode coherence-polarization features of
the sources at the recording plane. The first Stokes parameter in Equation (5), i.e., So(r)
represents the intensity and corresponds to the conventional hologram recording. Either a
combination of So(r) and S1(r) or S2(r) and S3(r) is sufficient to reconstruct the full field of
the object in a coherent recording. A detailed discussion on recording and reconstruction
of the Stokes hologram can be found in Refs. [9,10].

3. Experimental Design and Implementation

In order to consider the recording and reconstruction of holograms from the coherent
and fully polarized source, we confine it to the first two Stokes parameters and use holograms
of the orthogonally polarized components, i.e., Ix(r) = |Ex(r)|2 and Iy(r) =

∣∣Ey(r)
∣∣2. An

experimental scheme to simultaneously record these two holograms are shown in Figure 2. A
specially designed Mach–Zehnder type polarization interferometer equipped with a triangular
Sagnac geometry is used to simultaneously record the orthogonal polarization components. A
collimated diagonally polarized coherent beam is split into two copies by a beam splitter (BS1).
A beam, transmitted by BS1 and folded by the mirror M1, illuminates the sample. This object
beam is imaged at the camera plane through the BS2. On the other hand, a beam reflected
by the BS1 works enters into a triangular Sagnac interferometer assisted with a telescopic
lens assembly (L2 and L3) to generate a distinguishable orthogonally polarized reference
beam. A polarization beam splitter (PBS) splits into counter propagating orthogonally polar-
ized components. The mirrors M2 and M2 introduce spatial separation in the orthogonally
polarized components at the back focal plane of lens L2 which is also a front focal plane of
lens L3. Thus, the orthogonally polarized components, coming out of the triangular Sagnac
geometry, gain distinguishable linear phases at the back focal plane of lens L3 which overlaps
with the detector plane. The angular multiplexed reference beams is a significant feature of
our experimental design and has been utilized for single-shot polarization imaging [11] and
Jones matrix microscopy [13]. These reference beams interfere with the object beam and a
hologram is recorded by the charge coupled device (CCD). The intensity, recorded by the
CCD, is represented as

I(r) = |Ox(r) + Rx(r)|2 +
∣∣Oy(r) + Ry(r)

∣∣2
where Rx(r) and Ry(r) are reference beams for the x and y polarization components,
respectively. Orthogonal polarization components of the object field are represented as
Ox(r) = |Ox(r)|eiϕx(r) and Oy(r) =

∣∣Oy(r)
∣∣eiϕy(r).
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Figure 2. An experimental setup to record polarization hologram.

For demonstration purposes, we present an interference pattern of the birefringence
object in Figure 2. A mesh structure in the interference pattern, as highlighted in the
inset, appears due to distinguishable carrier frequencies of the orthogonally polarized
reference beams. This scheme is very important for recording and reconstructing the
spatially varying polarization of the object from a single hologram recording [11]. This
recorded hologram is subjected to digital Fourier fringe analysis to reconstruct the complex
fields of the orthogonally polarized components, and results are shown on the right hand
side in Figure 3.
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4. Challenges and Opportunities

In general, all four Stokes fringes are desired for a generic imaging application. An
intensity fringe is one of the four Stokes fringes. Thus, the recording and reconstruction of
all four fringes may require multiple measurements by varying the polarization optics or
using the polarization sensitive recording medium. A challenge of multiple-step recording
can be addressed by using a polarization-sensitive detector or using the random scattering
medium as a real-time recording medium with correlation-based reconstruction. The
importance of the Stokes fringes in polarization imaging can be highlighted by the example
of interference between the orthogonal polarization components which is not possible
to observe using conventional digital holography. Considering an off-axis object with a
horizontally polarized transmittance, i.e., Ox(ρ) = |Ox(ρ)|eiϕx(ρ), and reference with a
vertical polarization, i.e., Ry(ρ) = 1, the first two Stokes parameters at the recording plane,
i.e., So(r) and S1(r), are made of only non-modulating terms and no interreference appears
in these fringes as expected from the scalar theory. On the other hand, the Stokes fringes
S2(r) and S3(r) preserve a spatial carrier frequency introduced by the cross-modulations
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between the off-axis object and the on-axis reference source [10]. The recording and digital
reconstruction of the polarization holograms have also offered a new opportunity to use
speckle field illumination for high-resolution polarization imaging, and the technique is
referred as speckle-field digital polarization holographic microscopy (SDPHM) [13]. A
digitally generated speckle pattern illumination in the SDPHM offers a new opportunity to
explore high resolution polarization imaging.

5. Conclusions

The possible extension of digital holography to the polarization domain is discussed
and some of our recent contributions are briefly discussed in this paper. A special emphasis
is given to the recording and reconstruction of complete and spatially resolved polarimetric
features from a single hologram.
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