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Abstract: The head and neck is a complex area where imaging plays a major role in not only diagnosis,
but also in guided investigations, treatment planning, and, to an extent, guided interventions. This
type of imaging ranges from a simple digital orthopantomogram of the jaws and teeth to the complex
3D computed tomography (CT), magnetic resonance imaging (MRI), and cone beam computed
tomography (CBCT). Even though the imaging modalities have paved the way for more precise
examination and assessment compared to a decade ago; they still require slight renovations in
terms of the artifacts and dimensional blurriness invading the diagnosis. This paper sheds light
on few of the specific scenarios, such as metal artifacts due to prosthetic crowns, in CT, CBCT, and
MRI that greatly hinder the radiological diagnosis and assessment of the extent of lesions, posing
critical challenges in surgical planning. With regard to software resolution and available tools, this
presentation will cover the restrictions in handling image data, and the processible tools that can be
implemented for easy and efficient interpretation and modulation in orthognathic surgery, implant
surgery, and excisions of malignancies in the head and neck region.

Keywords: artifacts; imaging software; imaging difficulties; future modifications; head and neck
imaging; maxillofacial radiology; oral radiology; imaging

1. Introduction

The advent of advanced imaging modalities has had a great impact and provided
advantages in diagnosis and treatment planning in the head and neck region. Being the
most complex region, two-dimensional imaging can be used as a preliminary diagnostic
order, but complex diagnosis and treatment planning requires advanced imaging.

In the various imaging modalities of the head and neck, we can divide them into those
indicated for (i) odontogenic pathology/hard tissue imaging (predominantly cone beam
computed tomography) and (ii) non–odontogenic/trauma and malignancy (computed
tomography, magnetic resonance imaging, contrast imaging, and PET scans).

There has been an innumerable amount of studies and reviews on the advantages of
imaging modalities in the head and neck region. This review is intended to explore the
other side—the few disadvantages and diagnostic inhibitions. This paper attempts to bring
up solutions and rectifications that can significantly increase the quality of imaging.

2. Cone Beam Computed Tomography
2.1. Imaging Pitfalls

Even though CBCT is used in the case of effective imaging and treatment planning
for dental implants, maxillofacial trauma, and assessment of odontogenic pathologies,
random artifacts greatly decrease the diagnostic ability. There are many different types of
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CT artifacts, including noise, beam hardening, scatter, pseudo enhancement, motion, cone
beam, helical, ring, and metal artifacts. Manufacturers minimize beam hardening by using
filtration, calibration correction, and beam hardening correction software [1,2].

Consider a case in which the patient presented with chronic left-sided sinusitis. There
was a root canal-treated tooth in relation to the left maxillary molar. No clinical signs were
evident with regard to teeth. On an intraoral periapical radiograph, obturation seemed to
be normal, but revealed well-defined periapical pathology. The extent of the pathology
was not assessable, and the periapical pathology was suspected to be the source of the
sinusitis infection.

On CBCT, there were beam hardening streaking artifacts (black lines) present in
the volume (Figure 1). Upon assessing the axial section at the root end–maxillary sinus
floor interface, the streaking artifact had mimicked the destruction of the sinus floor
and communication between the sinus and periapical pathology (Figure 2), indicating a
radiodiagnosis of odontogenic sinusitis. Upon a surgical exploration with root end surgery,
this was proven to be a periapical scar and an intact maxillary sinus floor.
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Figure 2. At the root end–maxillary sinus floor interface, the streaking artifact mimicked the destruc-
tion of the sinus floor and communication between the sinus and periapical pathology.

The artifacts in CBCT are similar to those in CT, but they are more pronounced in
CBCT due to the heterochromatic X-ray beam present in CBCT and the lower mean kilovolt
(peak) energy compared with conventional CT.
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2.2. Diagnostic Inhibitions

CBCT has very low soft tissue resolution. It is still used for odontogenic/nonodontogenic
cysts of the jaws and trauma of the head and neck.

CBCT does not give us differential density values for soft tissues and fluid. The
Hounsfield unit and CBCT gray values are highly correlated, which has been proven in
multiple research studies [3,4]. Recent studies have attempted to diagnose cysts and soft
tissue pathologies through CBCT gray scale values. In a study by Meryem Etöz et al. [5]
identifying radicular cysts or apical granulomas using CBCT, a seven-criteria method was
used. The criteria included the relationship of lesions with dental roots, periphery of the
lesion, shape, darker focus in the center, root resorption, displacement in related teeth, and
cortical bone perforation. In addition, the minimum and maximum gray scale values of
the lesions were measured and compared. It was concluded that there was no relationship
between the histopathological diagnosis of lesions and CBCT gray scale values [5].

This concept can be explained by a case of swelling in the lower jaw for the past
9 months. No associated pain, numbness, or paresthesia were present. Clinically, distal
tipping of 32 and mesial tipping of 33 were evident. Upon vitality testing, 42, 41, 31, and
32 were found to be nonvital. A clinical provisional diagnosis of the radicular cyst was
given. The aspiration of the lesion revealed a straw-colored fluid. On CBCT, the pathology
in the anterior mandible was evident, with buccal cortical bone destruction, and the internal
structure revealed thin septa not extending throughout the lesion (Figure 3a,b). This posed
a diagnostic dilemma of either a tumor or a cystic lesion. The gray scale value did not
provide insight into the internal structure. The histopathological diagnosis was plexiform
ameloblastoma, an odontogenic tumor with centric cystic degeneration.
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Figure 3. (a) CBCT images of a clinically diagnosed cystic lesion reveal buccal and lingual cortical
bone destruction; (b) Internal structure revealing thin septa that do not extend throughout the lesion.
Gray scale value could not differentiate fluid/soft tissue in this case of plexiform ameloblastoma,
thus posing a radiological diagnostic dilemma.

3. Computed Tomography (CT)

Computed tomography has been widely indicated in head and neck trauma, pan-
facial trauma, and suspected head injuries. CT has been indicated in cases of soft tissue
involvement (orbital trauma), pan-facial trauma hindering soft tissue, muscular function,
and enophthalmos.

Due to the lack of immobilization of an acute trauma patient, artifacts may be more
frequent and nerve canal involvement/muscle involvement may not be assessed.

In a case of zygomatic complex fracture, orbital involvement revealed a linear min-
imally displaced fracture noted involving the left zygomatic arch, the lateral wall of the
left orbit. A comminuted displaced fracture involving the lateral wall of the left maxillary
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sinus with fracture fragments lying inside was associated with hemosinus (Figures 4 and 5).
However, the soft tissue window failed to reveal further details with regard to the pterygoid
muscles and orbital volume. Other than the displacement and type of fractures, the extent
of orbital involvement also determines surgical treatment in this case. The most common
cause of posttraumatic enophthalmos is increased orbital volume [6]. All images were
taken using 5th generation mono-energy CT machines with standard exposure parameters
of 140 kvp, 200 mA soft tissue with a slice thickness of 0.5–0.6 mm, and bony windows.
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fracture fragments lying inside, associated with hemosinus. The soft tissue window failed to reveal
further details with regard to the pterygoid muscles and orbital volume.

One more case of a photon starvation artifact hindering the assessment of the tongue
pathology and its extent in a computed tomography image is presented in Figure 6.
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Figure 6. Photon starvation artifact hindering the assessment of the tongue pathology and its extent
in a computed tomography image.

This photon starvation, or quantum mottle, greatly hindered the diagnostic quality of
the image. This results from insufficient X-ray photons reaching the sensor from the patient.
Even though techniques such as tube current modulation (TCM) and vendor-specific
and iterative reconstruction algorithms can reduce this effect, these types of artifacts still
represent considerable hindrances to diagnosis and assessment.

Streak and windmill artifacts greatly affect the scan images in CT. Windmill artifacts
occur due to under-sampling along the Z axis, which usually occurs in the clavicle re-
gion and the base of the skull region, where drastic anatomical changes and differential
Hounsfield units are present. A black streak artifact of the beam hardening effect greatly
disrupting the diagnostic quality can be seen in Figure 7.
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4. Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging is used in head and neck imaging predominantly for
ruling out craniofacial neuralgias, soft tissue extension of pathologies and malignancies of
the head and neck, diagnosis, and treatment planning.

The most common artifact present in MRI is motion blurriness (due to long scan time)
and metal artifacts.

Motion blurriness happens due to patient motion, swallowing, and even breathing in
the case of the head and neck region. The degree of blurriness could fall into a range of
minimal to extensive blur. A pediatric MRI image with severe motion blurs and distortion
of the image is presented in the sagittal section (Figure 8). This kind of artifact requires
a re-scan.
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Figure 8. MRI image of a pediatric patient taken for neuroimaging purposes. Severe motion blurs
and distortion of the image are evident.

Metal artifacts manifest in multiple forms—a complete signal loss may be observed
around the metallic object, or a rim of high signal intensity may be present around the
metallic devices. Metal-induced artifacts are still a challenging aspect of imaging. Many
technical methods and minor alterations have been proposed to reduce the presence
of metal-induced artifacts in MRI, such as view-angle tilting method, MAVRIC (multi-
acquisition variable resonance image combination), and SEMAC (slice-encoding for metal
artifact correction) can be used in the plane and through-slice displacements, but at a cost
of increased scan time, further increasing the inconvenience [7–9].

A similar example is presented in the T2 axial section (Figure 9). The porcelain
fused to metal fixed prosthesis placed in the mandibular anterior teeth caused a no-signal,
presenting anterior artifact extending to the level of the maxillary teeth. This is a particularly
inconvenient problem since the MRI imaging was performed to check for any malignant
spread in a recurring cancer patient. Although different technical alterations gave us a clue
about the region in one plane, it was not sufficient.
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Figure 9. T2 weighted image—axial section showing loss of signal in anterior mandible and maxilla
due to metal fused crown in mandibular anterior. This obscures the purpose of the MRI, which was
performed to identify any malignant spread in a recurring cancer patient.

Positron Emission Tomography

PET-CT (Positron Emission Tomography—Computed Tomography) is used to identify,
locate, and assess the anatomy and function of hypermetabolic tissue. It uses 18-FDG
(fluorodeoxyglucose) as a medium. The signals are then read by the system. 18-FDG
PET-CT is one of the most accurate methods for diagnosing primary HNC lesions. The
lesion cannot be accessed via visual inspection, with or without concurrent vision-guided
biopsy [10]. The specificity of PET-CT for identifying inspection-occult oropharyngeal SCC
has been measured at over 90%. According to the NCCN (National Comprehensive Cancer
Network), PET-CT is indicated for initial diagnosis for the following types of physical
examination for occult HNC (Head and Neck Cancers): oral cavity, supraglottic larynx,
ethmoid sinus, glottic larynx, oropharynx, and maxillary sinus [11,12].

It is widely used as a recall–review imaging modality for post-treatment follow-up
cases. The false positive possibility of PET-CT poses a major diagnostic inhibition and
a major pitfall. This is the reason why PET-CT has been avoided for post-radiation and
therapy patients for at least up to 8–12 weeks (to avoid post-inflammatory effects) [13].

Even then, PET-CT might show false positive results in a review patient who poses
diagnostic confusion. One such case is presented here: A 58-year-old male patient was
diagnosed and treated for salivary gland ductal carcinoma by surgery and radiotherapy
one year prior to this event. In the review CT, brain metastasis was evident. A PET-CT was
advised immediately, and PET-CT revealed metastasis to the lung nodules as well.

In addition to the signals in the metastatic nodules, a well-defined positive signal was
evident in the submental region (Figure 10a,b). Upon clinical correlation, there was no
evidence of a sign of metastasis in the submental region. This might be confused with a
metastatic involvement, thus representing a pitfall.
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Figure 10. (a) CT reveals hyperdense area in the submental region; (b) PET-CT reveals a well-defined 
positive signal was evident in the submental region, which was a false positive finding. 

This review briefly compiles the artifacts and diagnostic inhibitions/restrictions in 
head and neck imaging. Little software has been developed to reduce metal-induced 
artifacts, but its usage is limited and not accessible. Metal artifact reduction software 
(MARs) has been tested in phantom experiments with dental implants using mono-energy 
(MonoE) CT images, and it was found that a combination of MonoE and MARs 
reconstruction was the best method for reducing metal artifacts. This study had some 
major limitations [14]. 

5. Conclusions 
The advanced imaging in the head and neck region has greatly lifted the quality and 

efficiency of the diagnosis and treatment planning of pathologies. As new techniques and 
software are being introduced, their availability and accessibility are considerably lower. 
Even after advancements in imaging, these modalities have their pitfalls and diagnostic 
inhibitions. This paper attempts to address these from a maxillofacial physician and 
radiodiagnosis point of view, which can be used by physicists for the development of 
more accessible software and technical alterations to reduce these issues.  
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Figure 10. (a) CT reveals hyperdense area in the submental region; (b) PET-CT reveals a well-defined
positive signal was evident in the submental region, which was a false positive finding.

This review briefly compiles the artifacts and diagnostic inhibitions/restrictions in
head and neck imaging. Little software has been developed to reduce metal-induced
artifacts, but its usage is limited and not accessible. Metal artifact reduction software (MARs)
has been tested in phantom experiments with dental implants using mono-energy (MonoE)
CT images, and it was found that a combination of MonoE and MARs reconstruction was
the best method for reducing metal artifacts. This study had some major limitations [14].

5. Conclusions

The advanced imaging in the head and neck region has greatly lifted the quality and
efficiency of the diagnosis and treatment planning of pathologies. As new techniques and
software are being introduced, their availability and accessibility are considerably lower.
Even after advancements in imaging, these modalities have their pitfalls and diagnostic
inhibitions. This paper attempts to address these from a maxillofacial physician and
radiodiagnosis point of view, which can be used by physicists for the development of more
accessible software and technical alterations to reduce these issues.
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