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Abstract: The methodology basic principles of the neuro-evolutionary synthesis of multi-object
multi-criteria systems control models under conflict and uncertainty in real time are discussed. The
proposed methodology includes the following main stages: a hierarchical optimization game model
under conflict and uncertainty development; a library development of hierarchical coevolutionary
algorithms for multi-criteria optimization under conflict and uncertainty; software implementa-
tion of hierarchical coevolutionary algorithms library based on distributed computing technology;
and game algorithms of control under uncertainty synthesis based on the technology of neural
networks ensembles.

Keywords: hierarchical coevolutionary algorithm; multi-criteria optimization under conflict and
uncertainty; distributed computing; containerization; orchestration

1. Introduction

The report discusses the problem of multi-object multi-criteria control systems (MMS)
optimizing under conflict and uncertainty in real time. In modern concepts of system
analysis, a strict description of the MMS should take into account various types of un-
certain factors: uncertainty of the goal, conflict uncertainty, uncertainty of environmental
conditions. As we know, the above types of uncertainties can be most fully taken into
account by gaming approaches based on the integration of various conflict optimality
principles [1–4]. In particular, in [1], an approach based on the formation and study of
stable-effective gaming compromise properties is being developed. Comparison of differ-
ent approaches to the formation of stable-effective compromises (STEC) is an important
principle of game-theoretic analysis of MMS control models, as well as a source of strict and,
at the same time, meaningful reasoning about the motivations of the behavior of conflict
participants arising from the structure of conflict models.

When solving applied game problems of STEC search under uncertainty (STECU), a
number of problems arise. First, the STECU concept is based on the integration of various
game-theoretic principles of optimality. Second, the need for real-time implementation
of control algorithms, which often arises in applied problems, requires the representation
of control actions in the general case in the form of parameterized program-corrected
control laws. Such cases are characterized by a high dimension of criterion space and
control parameters space, non-linearity, non-convexity, and the presence of break points
of vector effectiveness indicators components of MMS subsystems, which determines the
high computational complexity of optimization algorithms. These features, combined
with the problem of global optimization, make it difficult or impossible to use well-known
optimization methods and algorithms to search for a STECU in real time.

Currently, the Machine Learning Control (MLC) methodology, using machine learning
methods to solve control problems of complex technical systems, is actively developing.
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One of the main paradigms of MLC is the technology of neuro-evolutionary synthesis,
which is considered as a promising means of implementing intelligent control algorithms
under uncertainty in real time [5–7].

At the same time, the effectiveness of the neuro-evolutionary approach to the STECU
formation is determined primarily by the capabilities of evolutionary algorithms:

– Complex accounting of the influence of the totality of these uncertain factors;
– Integration of the principles of optimality used to solve problems of the specified class;
– The use of advanced architectures, models and methods of distributed computing.

In [8–12], various aspects of improving of the evolutionary computational technology
of multi-criteria optimization efficiency, as well as its development in the direction of
coevolutionary algorithms constructing and their hybridization, are discussed. In [13,14],
the development of coevolutionary technology for a class of multicriteria optimization
problems under uncertainty is proposed. Game evolutionary algorithms are considered
in [15–18]. In [19–21], an evolutionary computational technology is being developed that
provides the possibility of combining various game-theoretic principles of optimality and
takes into account various uncertain factors on a single conceptual and algorithmic basis in
the task of MMS control optimization under conflict and uncertainty. This technology is
implemented in the form of a library of evolutionary algorithms [20] and has been used
to solve practical problems of the evolutionary synthesis of neuro-game algorithms of
MMS control in real time based on STECU [22–24]. The analysis of the results allows us to
draw the following main conclusions: the neuro-evolutionary technology of multicriteria
control algorithms under conflict and uncertainty synthesis is effective; at the same time,
the algorithms of game MMS control models neuro-evolutionary synthesis have extremely
high computational complexity; the practical use of neuro-evolutionary technology for
solving problems of the specified class requires its implementation on high-performance
distributed computing architectures.

2. Main Methodology Stages of Game MMS Control Models under Uncertainty
Neuro-Evolutionary Synthesis

The developed methodology of game MMS control models under uncertainty neuro-
evolutionary synthesis is presented in the form of a structural scheme in Figure 1 and
includes the following main stages.

Stage 1. Development of a library of hierarchical game models (HGM) of optimization
under conflict and uncertainty, implementing the basic principles of conflict optimality for
various types of conflict interaction, as well as providing the possibility of their integration
in the construction of STECU and coordinated STECU (COSTECU). For this purpose, the
problem of the MMS control optimizing under conflict and uncertainty is decomposed into
the following problems:

– Local control under uncertainty (LCU);
– Distributed control under uncertainty (DCU);
– Hierarchical control under uncertainty (HCU).

The LCU problem is formalized as a problem of multi-criteria optimization under
uncertainty (MCOU). To solve it, the principles of vector minimax and vector minimax
regret are used. The hierarchical model of MCOU is considered in [24,25].

The DCU problem integrates game problem statements, that cover a wide range of
types of conflict interaction and the corresponding principles of conflict equilibrium:

– Antagonistic interaction (principles of guaranteed result and saddle point);
– Non-coalition interaction (scalar equilibrium and vector Nash equilibrium, Ω—equilibrium);
– Coalition interaction (coalition equilibrium, equilibrium of threats and counter-threats,

active equilibrium);
– Cooperative interaction (arbitration schemes, Pareto optimality principle).
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Figure 1. Structural components of the neuro-evolutionary synthesis methodology of game control
models under uncertainty.

The hierarchical model of Nash vector equilibrium search under uncertainty is consid-
ered in [25].

The hierarchical control problem is formulated as a hierarchical game with the right
of the first move. To solve it, the principles of scalar and vector Stackelberg equilibrium
are used.

At the same time, all principles of conflict optimality are interpreted, taking into
account the uncertainty of environmental conditions.

Stage 2. Development of a library of multi-criteria optimization hierarchical coevolu-
tionary algorithms (HCEA) under conflict and uncertainty. HCEA’s structure corresponds
to the structure of hierarchical game models of optimization. This provides a flexible
algorithm adjustment for the realization of conflict interaction of various types and conflict
optimality principles as well as their integration in the formation of STECU and COSTECU.
In addition, the hierarchical structure of coevolutionary algorithms best corresponds to the
capabilities of distributed computing technologies. All this together provides a significant
synergistic effect.

Stage 3. Development of a software package for the synthesis of neuro-gaming control
models based on the HCEA library, Docker and Kubernetes [26,27] platforms, graphics
processors [28,29], a library of neural network ensemble learning models (NNE). The Docker
platform is used for the development, deployment and launch of container applications.
The Kubernetes platform is a tool for scaling, managing and coordinating the functioning
of containerized applications in a cluster environment. Figure 2 shows the generalized
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architecture of the neuro-evolutionary synthesis (NES) hierarchical control models (HCM)
software, which includes the following structural and functional components.

Figure 2. Architecture of the developed software.

Cluster. The Kubernetes cluster includes a master node (master), which provides
basic Kubernetes services and orchestrates subordinate (worker) nodes that execute various
components of the application. Important components of the master node are the tasks
controller, which manages the separation of threads, and the queues broker, which acts
as an intermediary between the main and working nodes of the cluster. When solving
the problem of integrating the principles of optimality included in the structure of the
STECU, the infrastructure of the software environment can be organized in the form of
several clusters. To accomplish this, Kubernetes provides a mechanism for organizing a
cluster federation.

A Docker container is a set of processes isolated from the main operating system.
Applications work only inside containers and do not have access to the main system,
except for explicitly connected directories when the container is launched (in this case,
GPU—Graphic Processing Unit).

Library of HGM:

Γ = {Γi, i = 1, |Γ|}. (1)

Image Storage:

R = {Ri, i = 1, |R|}. (2)

Each of HGM Γi in the image storage corresponds to an image, Ri, a set of control
instructions, according to which a container is formed from the library of algorithms and
data that implements the architecture of Γi.
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Description of applications (STECU):

S = {Si, i = 1, |S|}. (3)

The description of each application Si characterizes the structure of the corresponding
container, the composition and the number of replications that must be performed in
parallel when implementing the STECU.

Library of Neural Network Ensemble Training Models (NNE). It is used to solve
the problem of synthesis of NNE implementing multi-criteria control game algorithms
under conflict and uncertainty in real time. The peculiarity of this library is that it presents
single-criteria and multi-criteria statements of NNE training tasks: the least squares method
(LSM), the multi-criteria least squares method (MLSM), multi-criteria optimization of a
general kind, and multi-criteria optimization under uncertainty. Various models of training
sets formation oriented on solving game control optimization problems are also presented.

3. Conclusions

The methodology of neuro-evolutionary synthesis of MMS game control models
under conflict and uncertainty has been developed. Within the framework of the developed
methodology, the following tasks have been solved.

A library of HGM for optimizing the MMS control under conflict and uncertainty has
been developed, which allows us to form various schemes for integrating the principles of
conflict optimality when a STECU forms on a unified algorithmic basis.

The HCEA library of multi-criteria optimization under conflict and uncertainty has
been developed. The hierarchical structure of evolutionary algorithms best corresponds to
the capabilities of distributed computing technologies, and in this sense can be considered
as a means for structural meta-optimization of coevolutionary parallel algorithms.

A library of NNE training models oriented on solving of multi-criteria conflict control
under uncertainty problems has been developed.
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