engineering K\
proceedings MD\Py
Proceeding Paper

Artificial Neural Networks Multicriteria Training Based on

Graphics Processors

Vladimir A. Serov *'©, Evgenia L. Dolgacheva

and Anastasia V. Tararina

check for
updates

Citation: Serov, V.A.; Dolgacheva,
E.L.; Kosyuk, E.Y.; Popova, D.L.;
Rogalev, PP; Tararina, A.V. Artificial
Neural Networks Multicriteria
Training Based on Graphics
Processors . Eng. Proc. 2023, 33, 57.
https://doi.org/10.3390/
engproc2023033057

Academic Editors: Askhat Diveev,
Ivan Zelinka, Arutun Avetisyan and

Alexander Ilin

Published: 25 July 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

T

, Elizaveta Y. Kosyuk ‘, Daria L. Popova ‘*/, Pavel P. Rogalev

Department of Applied Information Technologie, MIREA—Russian Technological University (RTU MIREA),

Moscow 119454, Russia; evgeniadolgacheva@yandex.ru (E.L.D.); kosyuk.ey@mail.ru (E.Y.K.);

pdll3@yandex.ru (D.L.P.); radugapp@mail.ru (P.P.R.); nharvard2013@gmail.com (A.V.T.)

* Correspondence: ser_off@inbox.ru

t Presented at the 15th International Conference “Intelligent Systems” (INTELS’22), Moscow, Russia, 14-16
December 2022.

Abstract: The report considers the task of training a multilayer perceptron, formulated as a problem
of multiobjective optimization under uncertainty. To solve this problem, the principle of vector
minimax was used. A parallel software implementation of a hierarchical evolutionary algorithm for
solving a multicriteria optimization problem under uncertainty based on a GPU is presented.

Keywords: artificial neural network; multicriteria optimization under uncertainty; vector minimax;

parallel computing; GPU

1. Introduction

Currently, the technology of the neuroevolutionary synthesis of management and
decision-making models is being intensively developed, which is considered as a promising
means of implementing intelligent algorithms for analyzing information and management
under conflict and uncertainty in real time [1-5]. The effectiveness of the neuroevolutionary
approach for solving this class of problems is determined by the ability to take into account
uncertain factors, such as conflict uncertainty, the multicriteria of management goals, and
the uncertainty of environmental conditions. In this context, it is expedient to formalize
the task of training an artificial neural network (ANN) in the form of a multicriteria
optimization problem under uncertainty (MCOU). In [6,7], a coevolutionary technology
for solving the MCOU problem was developed, which, as the results of computational
experiments show, has an extremely high computational complexity. In [8-12], it was shown
that a promising area of research is the parallel implementation of computing technology
based on graphics processors (GPUs). In this article, a parallel GPU implementation of a
coevolutionary technology for solving the MCOU problem is proposed.

In Section 2, the formulation of the ANN training problem is formulated in the form
of an MCOU problem, where the principle of vector minimax is applied for its solution.
Section 3 presents a parallel GPU-based implementation of the MCOU hierarchical evolu-
tionary algorithm software. Section 4 presents the results of a computational experiment
on a test problem.

2. Problem Statement

The statement of the training problem for a multilayer perceptron (MP) is formulated
as an MCOU problem:
(W,Z,F(w,z)), @D

where w € W C E™ is a vector of weight coefficients of MP synaptic connections; z €
Z C E™ is a vector of uncertain factors; Z is a finite set of possible values of the uncertain

Eng. Proc. 2023, 33, 57. https:/ /doi.org/10.3390/engproc2023033057

https:/ /www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2023033057
https://doi.org/10.3390/engproc2023033057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0001-5395-6354
https://orcid.org/0000-0002-3321-4094
https://orcid.org/0000-0002-1000-2611
https://orcid.org/0000-0003-1767-4610
https://orcid.org/0000-0002-7411-7493
https://doi.org/10.3390/engproc2023033057
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2023033057?type=check_update&version=1

Eng. Proc. 2023, 33, 57

20of 6

factor; and F(w,z) = [fl w,z), ... fm (w,z)]T € E" is a vector criterion defined on the Cartesian
product W x Z.

In problem (1), it is required to determine the value of the vector w € W, which
provides the minimum values for the components of the vector criterion F(w,z) under the
influence of an uncertain factor z € Z, about which it is known only that it can take values
from a finite set Z.

To solve this problem, it is proposed to use the vector minimax principle. In this
case, the original statement of problem (1) is reduced to a deterministic multiobjective
optimization problem:

V(w) — min, 2)
weWw

where V(w) is a vector indicator, the components of which are the points of extreme
pessimism of the vector criterion F(w,z) on the set Z with fixed w.

To solve problem (1), (2), the hierarchical evolutionary algorithm (HEA) of the MCOU
developed in [6,7] is used. As studies [5,6] show, the HEA MCOU, when used in ANN
training tasks, shows a high computational complexity. Therefore, it is proposed to imple-
ment the HEA software for solving problem (1), (2), based on the GPU architecture and
OpenCL technology.

3. GPU-Based Parallel Implementation of the Hierarchical Evolutionary
MCOU Algorithm

The architecture of the developed HEA MCOU software reflects the following main
stages of the HEA MCOU implementation.

Stage 1. Formation of a set of points of extreme pessimism (Figure 1).

Step 1. The initial population W, |W| = n is formed on the host (CPU).

Step 2. Constant memory is allocated on the GPU, into which arrays Z and W are
entered. A buffer is allocated in the global memory of the GPU for the set of points of
extreme pessimism V(W).

Host (RAM)

Global memory

Module for calculating the vector criterion F(w, Z)] { Vector of values V(W) (vL..v), where n = number of w)]

Figure 1. Parallel algorithm for finding a set of points of extreme pessimism on the GPU.

Step 3. A grid is formed on the GPU that determines the number of working blocks
and the threads executed in them.

Step 4. The kernel is called with a subsequent transfer from the CPU to each thread of
a set of instructions for execution. Threads start to work in parallel. Within each thread, the
corresponding set of values of the vector criterion F(w,Z) is calculated for each w € W and
the extreme pessimism point V(w) is calculated on the set F(w,Z), which is stored in the
local memory of the thread. Upon completion, each thread transfers its value V(w) to the
global memory of the GPU. After the GPU has signaled that all threads have terminated,
the CPU moves the array V(W) from the GPU’s global memory to the CPU’s RAM.

Stage 2. Assessment of the fitness of each point w € W (Figure 2).

Eng. Proc. 2023, 33, 57

30f6

Step 5. Constant memory is allocated on the GPU, into which array V(W) is entered.
In the GPU’s global memory, a buffer is allocated for the set of values of the fitness function
D(V(W)).

ransfer o
source data Constant memon; v
Vectors [Source data: W, Z
v L
lock(n, 0)

Host (RAM)

Global memory

Fitness function calculation module Fitness(y, V)] { Setof values ®(V)

Figure 2. Parallel algorithm for calculating fitness function values on GPU.

Step 6. A new grid is formed on the GPU.

Step 7. The kernel is called and threads are started to work in parallel. Within each
thread, the corresponding value of the fitness function @(V) is calculated for each element
of V € V(W), which is stored in the local memory of the thread. Upon completion, each
thread transfers its ®(V) value to the GPU’s global memory. After the GPU sends a signal
to terminate all threads, the CPU transfers array @(V(W)) from the GPU’s global memory
to the CPU’s RAM.

Next, a population of descendants is formed on the CPU and the execution of stages 1,
2 is repeated.

The developed algorithm can be easily modified to solve the MCOU problem (1), (2),
where there are many uncertain factors.

The developed software is cross-platform, as CUDA and OpenCL technologies are
available on various operating systems, both on Windows and Linux.

4. Computational Experiment

The effectiveness of the developed technology was tested on the following test
task MCOU:
I = (X, Z, F(x,2)), 3)

where x = [xq, x2]T € Xis the vector of control parameters; z = [z;, zle € Z is the vector
of uncertain factors; and F(x,z) = [f; (x,z), fz(x,z)]T is the vector performance indicator with
components:

fi2) = 23 + x5 — x1(z5 — 23), 4)

frx,2) = x2 — x5 — x1(23 + 23).)

The restrictions were set in the form:

X ={0<xp,x <2}, (6)

Z={z,i=1,|Z]|0 < 21,2, < 2}. @)

It is required to maximize the components of the vector efficiency indicator on the set
X x Z based on the vector maximin principle.

Eng. Proc. 2023, 33, 57 40f 6

Figures 3-5 show the results of searching for a set of vector maximins using the HEA
MCOU (elite points in each generation are highlighted in red). Algorithm parameters:
population cardinality |X| = 1000; |Z| = 1000; real coding and SBX-crossover were used.

%7 -

—0.5 1 Jn‘- S L]
101 .,.f'. PP ..:'.
201 ﬁk‘.:‘.‘."ﬁ L] '--.)|
254 "

i 40' L ., '.* -:

454

2! g'h'f wltary
.)

T ey .,]
S (o e S

j:.z: ‘q‘tl- g =
B GSre

s
—apnd 'y e
-a.5 1 'ﬁ%\. rd
-ap04 ® e 9w
a5

wd

* -y - . ®
-10.0 1 .ﬁ‘. :&: '......-‘.:z ::..'f-
-105 * o ® -, em on,_ %7, . Weays
1104 =% anw e ien,3 f $ e *8%
115 4 L4} .;"‘"' "% L. o a0, r
1254 r
2] LA
—1354 LJ .
2] IR 3
=145 1 ‘
-15.0 1 =a -
-15.5 1 r
~16.0 1

4.0 =35 =3.0 =23 =20 =15 =10 =05 Q0 03 10 13 20 &3 30 353 490

Figure 3. Evolutionary MCOU algorithm, generation No. 1. Elite points in each generation are
highlighted in red.

os 4

004

-0.5 4

-104 L
151 »
-2.04 - l
-254 -
TR e o
351w

404 *
-4.5 4

5.0 1 .
-55<

—-6.04 T *
654

704
754
-3.0 4
a5 .
904
a5
-100 4
-10.5 {
-11.0 4
-1154
=12.0
-12.5 1
-1304
-13.5 9
-14.0 4
-145 4 .
-15.04

w2

40 =35 =30 =25 =20 -15 -10 =05 Q0 05 1.0 1% 2.0 25 30 35 4.0
vl

Figure 4. Evolutionary MCOU algorithm: generation No. 5.

Eng. Proc. 2023, 33, 57

50f6

w2

20 =15 =10 =05 00 03 10 13 20
wl

Figure 5. Evolutionary MCOU algorithm: generation No. 10.

Table 1 provides a comparative analysis of the running time of sequential and parallel
evolutionary algorithms for solving the considered MCOU test task.

Table 1. Comparative analysis of sequential and parallel MCOU algorithms.

Population Size |X|

Running Time of the Parallel
Algorithm tp,,, s

Running Time of the Sequential
Algorithm £, s

10 0.1353302 0.0003806

50 0.1354179 0.0049311

100 0.1397946 0.0129666

500 0.1476841 0.2834744

1000 0.1611041 1.0414738

5000 0.2373939 26.2836442
10,000 0.3495695 104.6257208
50,000 0.3617121 2623.5825713
100,000 0.6700136 10,134.2378412

A comparative analysis shows that, with a small population size |X| < 500, the
running time of the parallel evolutionary algorithm MCOU ¢, is greater than or com-
parable to the running time of the sequential algorithm ts,;. This is due to the fact that
the parallel algorithm spends additional time preparing and transferring data to the GPU.
However, with a further increase in the size of populations, the advantage of the parallel
evolutionary MCOU algorithm in relation to the sequential analog increases. In particu-
lar, for |X| = 100,000, the running time of the parallel evolutionary MCOU algorithm is

tpar =2 10t geq.

Eng. Proc. 2023, 33, 57 60f6

5. Conclusions

The formulation of the MP training problem was formalized as an MCOU problem,
where the vector minimax principle was used for its solution.

A parallel implementation of a hierarchical evolutionary algorithm for searching for a
set of vector minimaxes in the MCOU problem based on GPU and OpenCL technology is
presented. The developed algorithm can be easily modified to solve the MCOU problem
(1), (2), where the set of uncertain factors is infinite.

The results of the computational experiment on the test task show a significant ad-
vantage of the parallel GPU implementation of the developed co-evolutionary MCOU
algorithm in relation to the sequential analog.

Author Contributions: Conceptualization and methodology, V.A.S.; software and validation, D.L.P.
and PPR.; computational experiments, E.L.D., E.YK. and A.V.T. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, E.J.; Perez, R.E. Neuroevolutionary Control for Autonomous Soaring. Aerospace 2021, 8, 267. [CrossRef]

2. Bernas, M,; Placzek, B.; Smytla,]J. A Neuroevolutionary Approach to Controlling Traffic Signals Based on Data from Sensor
Network. Sensors 2019, 19, 1776. [CrossRef] [PubMed]

3. Salichon, M.; Tumer, K. A neuro-evolutionary approach to micro aerial vehicle control. In Proceedings of the 12th Annual Genetic
and Evolutionary Computation Conference (GECCO’10), Portland, OR, USA, 7-11 July 2010; pp. 1123-1130. [CrossRef]

4. Serov, V.A,; Voronov, E.M.; Kozlov, D.A. A neuroevolutionary synthesis of coordinated stable-effective compromises in hierarchical
systems under conflict and uncertainty. Procedia Comput. Sci. 2021, 186, 257-268. [CrossRef]

5. Serov, V.A.; Voronov, E.M.; Kozlov, D.A. Hierarchical Neuro-Game Model of the FANET based Remote Monitoring System
Resources Balancing. In Studies in Systems, Decision and Control. Smart Electromechanical Systems. Situational Control; Gorodetskiy
A., Tarasova I., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 261, pp. 117-130. [CrossRef]

6. Serov, V.A.; Voronov, E.M.; Kozlov, D.A. Hierarchical Population Game Models of Machine Learning in Control Problems Under
Conflict and Uncertainty. In Studies in Systems, Decision and Control. Smart Electromechanical Systems. Recognition, Identification,
Modeling, Measurement Systems, Sensors; Gorodetskiy, A.E., Tarasova, I.L., Eds.; Springer: Cham, Switzerland, 2022; Volume 419,
pp. 125-145. [CrossRef]

7. Serov, V.A. Hierarchical Population Game Models of Coevolution in Multi-Criteria Optimization Problems under Uncertainty.
Appl. Sci. 2021, 11, 6563. [CrossRef]

8. Andién,].M.; Arenaz, M.; Bodin, F,; Rodriguez, G.; Tourino, J. Locality-aware automatic parallelization for GPGPU with
OpenHMPP directives. Int. J. Parallel Program. 2016, 44, 620-643. [CrossRef]

9. Chandrashekhar, B.N.; Sanjay, H.A. Performance Study of OpenMP and Hybrid Programming Models on CPU-GPU Cluster. In
Emerging Research in Computing, Information, Communication and Applications; Springer: Singapore, 2019; pp. 323-337.

10. Chandrashekhar, B.N.; Sanjay, H.A. Srinivas, T. Performance Analysis of Parallel Programming Paradigms on CPU-GPU Clusters.
In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India,
25-27 March 2021; pp. 646-651.

11. Soyata, T. GPU Parallel Program Development Using CUDA; CRC Press: Boca Raton, FL, USA, 2018.

12. Karovi¢, V.; KaZmierczakb, M.; Pankivb, O.; Gérkiewiczb, M.; Zakharchukc, M.; Stolyarchuke, R. OpenCL and CUDA Comparison

of MapReduce Performance on Distributed Heterogeneous Platform through Integration with Hadoop Cluster. In Proceedings
of the CEUR Workshop Proceedings, IT&AS’2021: Symposium on Information Technologies & Applied Sciences, Bratislava,
Slovakia, 5 March 2021; pp. 202-208.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/aerospace8090267
http://dx.doi.org/10.3390/s19081776
http://www.ncbi.nlm.nih.gov/pubmed/31013905
http://dx.doi.org/10.1145/1830483.1830692
http://dx.doi.org/10.1016/j.procs.2021.04.145
http://dx.doi.org/10.1007/978-3-030-32710-1_9
http://dx.doi.org/10.1007/978-3-030-97004-8_10
http://dx.doi.org/10.3390/app11146563
http://dx.doi.org/10.1007/s10766-015-0362-9

	Introduction
	Problem Statement
	GPU-Based Parallel Implementation of the Hierarchical Evolutionary MCOU Algorithm
	Computational Experiment
	Conclusions
	References

