
Citation: Wolf, D.; Mamchenko, M.;

Jharko, E. Control of Unmanned

Vehicles in Smart Cities Using a

Multi-Modal Brain–Computer

Interface. Eng. Proc. 2023, 33, 43.

https://doi.org/10.3390/

engproc2023033043

Academic Editors: Askhat Diveev,

Ivan Zelinka, Arutun Avetisyan

and Alexander Ilin

Published: 28 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Control of Unmanned Vehicles in Smart Cities Using
a Multi-Modal Brain–Computer Interface †

Daniyar Wolf , Mark Mamchenko * and Elena Jharko

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Profsoyuznaya Street 65,
Moscow 117342, Russia; runsolar@mail.ru (D.W.); zharko@ipu.ru (E.J.)
* Correspondence: markmamcha@gmail.com; Tel.: +7-495-198-1720 (ext. 1850)
† Presented at the 15th International Conference “Intelligent Systems” (INTELS’22), Moscow, Russia,

14–16 December 2022.

Abstract: The article presents an overview of several studies in the field of Brain–Computer Interfaces
(BCIs), the requirements for the architecture of such promising devices, as well as multi-modal BCI
for drone control in a smart-city environment. Distinctive features of the proposed solution are the
simplicity of the architecture (the use of only one smartphone for both receiving and processing
bio-signals from the headset and transmitting commands to the drone), an open-source software
solution for signal processing, generating, and sending commands to the unmanned aerial vehicle
(UAV), as well as multimodality of the BCI (the use of both electroencephalographic (EEG) and
electrooculographic (EOG) signals of the operator). For bio-signal acquisition, we used the NeuroSky
Mindwave Mobile 2 headset, which is connected to an Android-based smartphone via Bluetooth. The
developed Android application (Tello NeuroSky) processes signals from the headset and generates
and transmits commands to the DJI Tello UAV via Wi-Fi. The decrease (depression) and increase of
α- and β-rhythms of the brain, as well as EOG signals that occur during blinking were the triggers
for UAV commands. The developed software allows the manual setting of the minimum, maximum
and threshold values for the processed bio-signals. The following commands for the UAV were
implemented: take-off, landing, forward movement, and backwards movement. Two threads of the
smartphone’s central processing unit (CPU) were utilized when processing signals in the software
to increase the performance: for signal processing (1-D Daubechies 2 (db2) wavelet transform) and
updating data on the diagrams, and for generating and transmitting commands to the drone.

Keywords: Brain–Computer interface (BCI); Brain–Machine Interface (BMI); unmanned vehicle;
unmanned aerial vehicle (UAV); smart city

1. Introduction

The current concept of a smart city assumes the increase of self-sufficiency of un-
manned vehicles (UVs), as well as the amount of data generated and transmitted. The
decisions on changing the trajectory and modes of movement will be made either by the
UVs themselves or by traffic control centers. The operators in these centers will monitor and
control current road/air situations. In addition, in the case of emergencies, the operators
will be able to take control of one or more UVs to prevent traffic/air incidents. The rapid
development in BCI-based control of robotics, UAVs, and other objects (including in smart
environments [1–4]) supposes the implementation and use of such a way of control of UVs
in traffic control centers, including as a backup option. UV control using BCI has the poten-
tial to reduce the time of transmitting the commands, as well as to ensure simultaneous
control of multiple vehicles by one operator. Thus, the problem of developing methods,
techniques, algorithms, and software for the control of UVs in smart cities using BCI is
relevant. It should be noted that this paper focuses exclusively on the control of aerial
objects—UAVs—but the given solution can be adapted for other similar objects, including
ground and surface UVs.
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It is customary to allocate two main data-processing and transmission nodes in the
loop of UV/UAV control using the operator’s bio-signals:

• BCI, designed to acquire, convert, and process these bio-signals, classify and
detect features;

• Computer–Machine Interface (CMI), designed to convert the output of BCI to drone/
robot/machine-compatible control commands and transmit them to the control object.

Although the general solution for operating a robot/UAV using human bio-signals
would be better called the Brain–Machine Interface, the literature also refers to it as the
BCI (as a combination of the Brain–Computer Interface itself and the CMI). Hereinafter, the
term BCI will be used [5].

The work is structured as follows. Section 2 presents a description of existing BCI-
based UAV control solutions (related work), the types of bio-signals used, and their analysis.
Section 3 provides the requirements for promising BCIs for UV control in a smart-city
environment, as well as the aim of the research. Section 4 presents the description of the
architecture of the proposed BCI, its hardware, and software. Section 5 presents a discussion
on the current state of BCI-based solutions for UAV control, including in smart cities.

2. Related Work

One of the main steps in the development of BCI is the choice of the bio-signal to
process, identify changes, and match them with a certain command for the control object.
In particular, such signals may include [1–7]:

1. EOG, from blinking and eye movement;
2. Electromyographic (EMG) data resulting from tension/relaxation of facial muscles;
3. EEG, e.g., the increase of α-rhythms and decrease of beta-rhythms due to men-

tal relaxation (meditation) or decrease of α-rhythms and increase of beta-rhythms
when concentrating.

The latter type of signals includes:

• Steady-state visual-evoked potentials (SSVEPs) generated by the brain in response to
visual stimulation of a certain frequency (flashes, brightness changes, etc.);

• Motor imagery (MI)—signals that occur during the imagination of performing
motor movements;

• Visual imagery (VI)—signals that occur during the visual representation of objects in
the absence of appropriate real visual stimuli;

• Speech imagery (SI)—signals that occur during the mental pronouncing of letters
or words;

• Mental commands to the control object—signals that occur when imagining the desired
state or action of the object (movement, rotation, etc.).

In addition, it is possible to select and use several types of signals; in this case, such
BCIs are referred to as multi-modal [6,7]. Below is a description of several existing BCI-
based solutions for UAV control, corresponding approaches, methods, algorithms, hard-
ware, and software, as well as the results achieved.

2.1. EOG and EMG

In paper [8], a Parrot Mambo Fly UAV was controlled based on the changes in EOG
and EMG signals of the operator. These signals were transmitted to a personal computer
(PC) for processing, including signal filtering, the use of a convolutional neural network,
and various classifiers (random forest (RF), nearest neighbors, and convolutional) for
feature detection. The drone was controlled as follows: the move axis was selected by
raising the eyebrows, and the blinking of the left and right eyes corresponded to forward
and backward flight along the selected axis. The advantages of the proposed approach are
high recognition accuracy (higher than 80%) and low time response (42.21 ms). However,
the description of the process of actual application of the proposed BCI architecture for
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the control of the Parrot Mambo Fly UAV was insufficient, and the overall drone control
process is relatively complex.

The authors of [9] presented a method of UAV control using widely available and
relatively inexpensive equipment. In particular, the researchers used the TGAM module
sensor made by NeuroSky Shennian Technology with two electrodes. Data transfer from
BCI to Arduino Pro Mini with NodeMcu for further processing was carried out via Blue-
tooth (HC-05 module). The UAV (DJI Tello) was connected and controlled via Wi-Fi. EMG
and EOG signals were used to form commands. The EMG triggers are eyebrow pick, single,
double, and triple blink, corresponding to four commands for the UAV: forward, backward,
left, and right. EMG signals were used to prevent losing control of the drone. Several other
commands are stated to be implemented, including take-off, landing, move up, and move
down. The authors note high control signal delay, low recognition accuracy, and inflexible
switching between actions for the proposed solution as the disadvantages of the proposed
solution. In addition, it is generally not clear how the drone was operated, i.e., what signals
(except EMG) were eventually used to form other commands for the UAV.

2.2. Mental Concentration and Relaxation

The authors of [10] proposed an approach to control a virtual drone using Emotiv
Insight EEG headset by changing the states of mental concentration and relaxation of the
operator. A virtual scene was implemented in the Unity Game Engine environment. The
virtual UAV was controlled using proprietary Emotiv Emokey software, which emulates
keystrokes. Forward acceleration on the predefined path (track) was realized when the
operator enters the active mental state. In a neutral state (mental relaxation), the drone
slowed down until it stopped. As a disadvantage, there was the implementation of only
two commands and a fixed route for the drone.

2.3. SSVEPs

The authors in [11] presented the method of UAV control and the corresponding BCI
based on the Unicorn software and hardware, and the g.tec. Hybrid Black EEG headset.
The EEG signal was transmitted via Bluetooth to the Unicorn Speller PC. UAV control
commands were formed using SSVEPs: The operator focused on certain flashing characters
in the Unicorn Speller program. Data from the Unicorn Speller were then passed to
another PC via UDP, converted to UAV-compatible commands using Python API, and then
transmitted via Wi-Fi to the Parrot Bebop 2 drone. The researchers managed to introduce
12 SSVEP-based commands (take-off, right, left, up, down, move forward, backward,
take picture, start video stream, pause, land, and emergency stop). A disadvantage is
the bulky hardware architecture of the solution, as well as delays in the transmission of
control signals.

Another approach to UAV control using an SSVEP-based BCI is given in article [12].
Emotiv Epoch headset and Easycap devices were used to collect EEG data. Visual stimuli
at four frequencies (5.3, 7, 9.4 and 13.5 Hz) were used to form UAV control commands. The
8th-order Butterworth bandpass filter and Fast Fourier Transform algorithm were used for
data filtering and SSVEP feature detection, respectively. The use of four SSSVEPs allowed
the implementation of the appropriate number of commands for UAV control—take-off,
land, move forward, and right turn. The researchers managed to reach a 92.5% value of
feature-detection accuracy. However, the architecture of the proposed solution and the
stack of tools used is quite complicated: the user is supposed to use the EEG headset,
Easycap device, and one PC to form SSVEPs and another one to process the EEG signals.

The authors in [13] presented a BCI for drone control capable of operating in VR and
AR environments using head-mounted displays. A DSI VR300 device was used to acquire
EEG signals. A virtual scene was developed in Unity, and OpenViBE software was used
to communicate with the EEG headset. Eight control commands (turn right, turn left,
move up, move down, move left, move right, move forward, and move backward) were
formed using SSVEPs (interface buttons flashing with different frequencies). It is possible
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to control a virtual drone and a real DJI Tello UAV in VR and AR modes, respectively.
However, the disadvantage of the proposed solution is similar to previous SSVEP-based
BCIs [11,12]—bulky architecture and a large stack of hardware used.

2.4. Motor Imagery

The authors in [5] presented a BCI based on motor imagery (µ brain-wave response)
for drone control purposes. The OpenBCI hardware platform was used to acquire the EEG
signals. Common Spatial Patterns and Linear Discriminant Analysis methods were used
to process EEG data. The authors proposed an algorithm for forming commands for the
drone based on the classifier. To verify the proposed approach and algorithm, a virtual
simulator with AR Drone 2.0 UAV (including its dynamic model) was used. However, only
two commands were implemented—turn left and turn right—by changing the yaw angle,
while the UAV in the simulator was moving with a constant velocity.

The authors in [14] proposed the use of LabVIEW and MATLAB software and the
Undecimated Wavelet Transform algorithm for noise reduction and resolution analysis. A
method for extracting the features of EEG signals using Independent Component Anal-
ysis and the coefficient of determination was developed. A hybrid neural network was
developed to classify sensorimotor rhythms (MI) in EEG signals. The obtained maximum
classification rate result was 95.67%. The LabVIEW environment was used to control a
virtual drone.

2.5. Mental Commands

The authors in [15] presented an approach to UAV control based on the mental com-
mands (mind concentration and relaxation) of the operator. The authors presented a
mathematical model for processing EEG data in a MATLAB framework. The Emotiv
Insight BCI headset was used to acquire the EEG signal, and a PC with the EmotivBCI
application was used to process signals and form commands for the DJI Tello UAV via the
appropriate API. Three commands were mentioned in the paper—move left, move up, and
move down—but only two latter commands were described. A similar approach is given by
the authors in [16], its fundamental difference being the purposeful use of consumer-grade
EEG headsets for BCI. In particular, Emotiv Insight and Muse (Interaxon) devices were
used to acquire EEG signals. The paper also proposes the use of a machine-learning model
for classification and feature extraction, considering two classifiers: RF and Support Vector
Machine (SVM). The use of the Muse EEG headset and the SVM classifier resulted in 70%
feature extraction accuracy. However, the movement of the Crazyflie 2.0 drone in the
practical experiment was realized only using two commands (move forward and move
backward), while there is no description of other commands (choosing the direction of
movement, turns, altitude changes, etc.).

The authors in [17] presented a similar approach to UAV control. Emotiv Insight
headset was used for EEG signal retrieval. The object of control was the Parrot Rolling
Spider quadcopter. The MATLAB EEGLAB toolbox and BCI2000 software were used to
process EEG signals. Feature extraction and training were carried out using the Emotiv
Xavier Control Panel software. Five commands for the UAV are available: take-off, move
up, move down, change of pitch angle with right turn, and change of pitch angle with left
turn. The main disadvantage is the lack of practical testing results of the proposed solution,
as well as the use of proprietary systems for feature extraction and training.

2.6. Multi-Modal BCIs

The authors in [18] proposed a BCI that combines the use of MI and SSVEPs. Geodesic
Sensor Net (Electrical Geodesics Inc.) was used to acquire an EEG signal. The processed
data were transmitted with a fixed time interval to the DJI Matrice 100 quadcopter via
Wi-Fi. As a result of the processing of detected features, the following commands for the
UAV were implemented: left-forward, right-forward, move up, and move down. Eye-
blinking was used to switch between the two flight modes. The main shortcoming of
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the proposed approach was the relative complexity of the architecture (the use of an EEG
headset, one PC for signal processing, another PC, and a monitor for generating and
showing visual stimuli).

The authors in [19] proposed an approach to the combined use of MI, VI, and SI
techniques for EEG-based control of the drone swarm. A headset with 64 electrodes and
BrainVision Recorder (BrainProducts GmbH) software was used to retrieve the EEG signal.
The left and right hands were assigned to choose the left or right direction of the swarm
of drones, respectively, and arms and legs were assigned to high- and low-altitude flights,
respectively (MI usage). Smarm maneuvering, merging, and splitting were carried out via
VI, and flight control was conducted using SI. Machine-learning algorithms were used to
classify patterns in EEG signals.

The authors in [20] presented an approach to UAV control using BCI based on the
recognition of the mental commands of the operator, and EMG signals resulting from the
changes in the facial expression of the operator. An Emotiv Insight headset was used
to acquire the EEG signal, which was then transferred via Bluetooth to a PC for further
processing. Preliminary control signals were transmitted to the Raspberry Pi board, which
converted them into drone-compatible commands and sent them to the Parrot Mambo
MiniDrone UAV via Wi-Fi. Five commands were implemented: move backward, move
forward, turn left, turn right, and land. The authors claim 88% precision recognition of
mental commands of the operator. However, the influence of facial motor skills on the EEG
signals in the practical experiment was not fully disclosed. Moreover, the architecture of
the proposed solution was relatively complex.

The authors in [21] proposed EEG-based drone control algorithms based on monitoring
the operator’s blinking and mental concentration. A NeuroSky device was used for EEG
signal retrieval, and the data acquired were then transferred to a PC via Bluetooth for
further processing. The classification system was based on a neural network, the SVM
classifier, the Linear Regression Method, and the dynamic concentration threshold value.
Based on the number of operator blinks within five seconds, a 4-bit sequence corresponding
to a specific command for the drone was generated. Thus, it is possible to form up to
16 commands, and the following nine commands were implemented in the paper: take-off,
land, move up, move down, move forward, move backward, move to the right, move to
the left, and stop. However, it should be noted that the article does not fully disclose the
description of the problem of generating false commands for the UAVs when generating
several control signals within less than five seconds.

2.7. Analysis of the Proposed Solutions

In general, based on the studies considered, it is possible to identify the following
main shortcomings of the existing BCI solutions for UAV control:

1. The complexity of the control process and switching between actions, insufficient
number of implemented commands, as well as a priori simplification of the UAV
control (e.g., moving in a straight line, with a fixed velocity, etc.).

2. The complexity of the architecture of the solution (the use of one or more PCs,
Arduino/Raspberry Pi boards, as well as various software), which leads to high
control signal delay.

3. Proprietary and open-source software solutions for signal retrieval and processing are
deployed mainly on PCs.

4. The need to use additional hardware for bio-signal processing (for example, SSVEP-
based interfaces may require an additional monitor and a PC to display visual stimuli).

Based on the identified shortcomings, it is possible to form requirements for a promis-
ing BCI-based solution for drone control, as well as to state the problem of the research.
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3. Requirements for a Promising BCI and Problem Statement

Based on the review of the considered studies that propose different approaches, meth-
ods, and algorithms for BCI-based drone control, as well as the shortcomings identified, it
is advisable to highlight the following four main requirements for the promising solutions:

1. The implementation of at least 10 control commands (take-off, land, move forward,
move backward, move left, move right, move up, move down, turn left, and turn right).

2. Ease of control and switching between actions, for example, using different bio-signals
to generate different commands within multi-modal BCI.

3. Simplicity of BCI architecture, and the use of the minimum necessary hardware and
software stack for drone control. It is preferable to use open-source software solutions.

4. Taking into account the unique features of the brain activity of each operator, including
adaptive adjustments via the use of machine-learning methods when processing bio-signals.

Problem Statement

In this paper, we aim to develop the architecture of the BCI and its corresponding
software that meet the third and second (partially) items of the above requirements. The
aim of the work is to simplify the hardware components of the BCI, as well as to develop
an open-source solution for processing bio-signals and generating commands for a drone.
The multimodality of the developed BCI involves the use of both EEG and EOG signals.

4. BCI Architecture, Hardware and Software

This paper uses the proposed concept of non-invasive BCI, as well as methods of EEG
signal retrieval and processing [22,23]. To acquire EEG and EOG signals, we used the Neu-
roSky Mindwave Mobile 2 headset, which was connected to an Android-based smartphone
via Bluetooth. The developed Android application—Tello NeuroSky (v. 1.0)—processes
the signals received from the headset, generates drone-compatible commands, and trans-
mits them to the DJI Tello UAV via Wi-Fi. The architecture of the proposed BCI and the
equipment used are shown in Figures 1 and 2, respectively.

The developed software allows the use of the increase and decrease of α- and
β-rhythms and EOG signals from blinking as triggers to generated commands for UAV.
The application implements manual adjustment of minimum, maximum, and threshold
values for α- and β-rhythms, as well as for EOG signals. The following commands have
been implemented: two blinks in a row—take-off; three blinks in a row—land; increase
of β-rhythms (above the threshold and α-rhythms)—move forward by 20 cm; increase of
α-rhythms (above the threshold and β-rhythms)—move backward by 20 cm. Due to the
high computational load on the smartphone CPU, the software uses two separate threads:
one for signal processing (1-D Daubechies 2 (db2) wavelet transform) and visualizing
data on charts, and another one for generating and transmitting commands to the drone.
Figure 3 shows the graphical user interface (GUI) of the developed software.

Figure 1. The architecture of the proposed BCI-based UAV control solution.
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Figure 2. BCI equipment and hardware.

Figure 3. Software GUI (a) detection of two blinks in a row; (b) detection of three blinks in a
row; (c) detection of α-rhythm amplification and β-rhythm depression; (d) detection of β-rhythm
amplification and α-rhythm depression.

5. Discussion

Within the formed list of requirements for a promising BCI-based solution for UAV
control (including in smart cities), we managed to implement the third as well as part
of the second requirement. The simplicity of the architecture of the proposed solution
lies in the use of only one smartphone for retrieving and processing bio-signals, and for
transmitting control commands to the drone; the software solution is open-source and
free to the public. The developed BCI is multi-modal: the tracking of changes in α- and
β-rhythms and eye-blinking are used to form different commands for the UAV. We plan to
introduce additional commands for the UAV: changes in µ-rhythms of the brain can be used
to implement left/right movement. In addition, machine-learning methods and a neural
network will be introduced to better detect blinking and take into account the individual
characteristics of the bio-signals of each operator. This paper focuses exclusively on the
control of aerial objects—UAVs—though the proposed solution can be adapted for other
objects, including ground and surface UVs. The software code for the presented solution is
available at [24].
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6. Conclusions

The article presents an overview of the current state of research in BCI for UAV
control and requirements for similar promising solutions, and proposes multi-modal BCI
to control drones in a smart-city environment. The developed software allows the use of
the depression and amplification of α- and β-rhythms of the brain and EOG signals that
occur during blinking as commands to control the flight of aerial objects. Four commands
are implemented: take-off, land, move forward, and move backward.

The distinctive features of the proposed solution are the simplicity of the architecture.
Only one Android-based smartphone is used for both receiving and processing signals from
the headset and generating and transmitting commands to the drone. The above functions
are implemented in the developed open-source publicly available software. The proposed
BCI is multi-modal since both EEG and EOG signals are being processed. It is planned
to introduce additional commands for a UAV (move left/right) and implement a neural
network and machine-learning methods to take into account the individual characteristics
of bio-signals of each operator. The presented solution can be adapted to control other
mobile objects in smart cities, including ground and surface UVs.
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