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Abstract: The purpose of this work is to research the possibility of a side-channel attack, more
precisely power consumption attack (recovering the encryption key according to the board’s power
consumption schedule) on the AES-128 algorithm implemented in hardware. Basically, various
methods can be used to make an attack, including SPA (Simple Power Consumption Attack) and DPA
(Differential Power Consumption Attack). SPA methods involve a simple visual analysis of energy
consumption graphs, while DPA involves the use of statistical methods to recover the encryption key.
One way to make side-channel attacks more effective is to implement machine learning methods for
the described purposes.
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1. Introduction

The purpose of this research work is to study the possibility of implementing machine
learning to side-channel attack, more precisely to speed up the process of analyses of
the oscillogram of the power consumption (power consumption) of the encryption board
(traces) [1].

Side-channel attacks (SCA) are a powerful type of cryptographic attack that takes
advantage of physical leakages, such as electromagnetic radiation or changes in power
consumption. Early SCAs involved timing attacks to break Rivest–Shamir–Adleman (RSA),
Diffie–Hellman (DH), and Digital Signature Standard (DSS) encryption by measuring the
execution time of different code branches and operations. Later, it was discovered that
device power consumption leaks information about Data Encryption Standard (DES) and
Advanced Encryption Standard (AES) by using both simple [2] and differential analy-
sis [3–6]. Modern SCAs use many non-invasive ways to measure leakage, for example,
electromagnetic signals [7,8] or acoustic cryptanalysis [9,10]. More works about different
SCA on various cryptographic algorithms can be found in [11–14].

In this work, we will be focusing on the power consumption attack on algorithm AES-
128. During the operation, bits of the key used by the encryption board will be restored
from the original traces. As initial data, power consumption traces, and encryption keys are
needed, they were used during the operation of the board. These data can be obtained using
an oscillogram from a programmable logic integrated circuit, on which any encryption
algorithm is above.

For the purposes of this work, a TinyAES dataset was selected, it was taken from the
board on which the AES-128 algorithm is implemented. Connection data from plaintext,
encryption key, ciphertext, and a set of 20,000 points representing a power consumption
waveform. In the end, the implementation of research involves obtaining a ready-made
algorithm. The extraction of the generated key from the original traces using statistical
methods, as well as machine learning methods and neural networks.

The paper is organized as follows. Section 1 describes basic concepts for the work
of neural networks and the method of its implementation, Section 2 demonstrates the
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results of the implementation of neural networks to power analysis attack on AES-128, and
Section 4 summarizes the results of presented researches and plans for future studies.

2. Neural Networks

In this work, a machine learning method will be used as neural networks [15,16].
Neural networks are based on the principle of connectivism—a large number of relatively
simple elements are connected in them, and learning comes down to building the optimal
structure of connections and setting the connection parameters. To build an artificial neural
network (ANN) we will use the same structure. Like a biological neural network, an
artificial one consists of neurons interacting with each other, but it is a simplified model.
So, for example, an artificial neuron that makes up an ANN has a much simpler structure,
it has several inputs on which it receives various signals, transforms them, and transmits
them to other neurons. In other words, an artificial neuron is such a function RT− > R,
which converts multiple inputs into one output.

As you can see in Figure 1, the neuron has n inputs xi, each of which has a weight wi,
by which the signal passing through the connection is multiplied. After that, the weighted
signals xi · wi are sent to the adder, which aggregates all the signals into a weighted sum.
This sum is also called net. In this way:

net =
n

∑
i=1

xi · wi = x · wT . (1)

Figure 1. Scheme of an artificial neuron.

Just like that, it is rather pointless to transfer the weighted sum net to the output—the
neuron must somehow process it and form an adequate output signal. For these purposes,
an activation function is used, which converts the weighted sum into some number, which
will be the output of the neuron. The activation function is denoted φ(net). Thus, the
output of an artificial neuron is φ(net).

Neural network training is the search for such a set of weight coefficients, in which
the input signal, after passing through the network, is converted into the output we need.

This definition of “training a neural network” is consistent with biological neural
networks. Our brain consists of a huge number of interconnected neural networks, each of
which individually consists of neurons of the same type (with the same activation function).
Our brains learn by changing synapses, elements that increase or decrease the input signal.

If we train the network using only one input signal, then the network will simply
“remember the correct answer”, and as soon as we give a slightly modified signal, instead of
the correct answer, we will receive nonsense. We expect the network to be able to generalize
some features and solve the problem on various input data. It is for this purpose that
training samples are created.
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A training sample is a finite set of input signals (sometimes along with the correct
output signals) on which the network is trained. After the network has been trained, that is,
when the network produces correct results for all input signals from the training sample, it
can be used in practice. However, before immediately using a neural network, the quality
of its work is usually assessed on the so-called test set. A test sample is a finite set of input
signals (sometimes together with the correct output signals), which are used to evaluate the
quality of the network. Neural network training itself can be divided into two approaches,
supervised learning, and unsupervised learning. In the first case, the weights are changed
so that the network’s answers are minimally different from the ready-made correct answers,
and in the second case, the network independently classifies the input signals.

3. Results

In this research work, a model was developed based on the theory of neural networks.
An implemented neural network model allows one to obtain information about the secret
key that was used for encryption from the captured waveforms of the power consumed by
the encryption device.

The initial oscillograms were loaded and normalized to values from −1 to 1, the graph
of one of the traces is shown in Figure 2.

Figure 2. Example of an oscillogram of the power consumption of an encryption module.

Further, for each oscillogram, the bytes of interest were allocated-outputs from the
Sbox for the third round. After that, these bytes were transferred to one main vector (vector
with dimension 256, where 1 is at the position corresponding to the value of this byte
and 0 in all other positions).

The resulting waveforms and one main vector were used to train the SCANet neural
network. Graphs of changes in the loss function, and classification accuracy are shown
in Figure 3.

To evaluate the final result, the prediction of the neural network, it is necessary to use
the rank function, its graph is shown in Figure 4. This function indicates how reliable the
values provided by the neural network are. The lower the rank, the easier it is to pick up
the bytes that were used in the encryption. As can be seen from the graph, with an increase
in the number of traces, the rank decreases, which means a decrease in the complexity of
determining the initial key.

When using an untrained neural network to determine the initial key, the rank function
does not fall with an increase in the number of traces, that is, the complexity of obtaining
the initial key remains at the level of random predictions, which is shown in Figure 5.
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Figure 3. Loss function and classification accuracy plots.

Figure 4. Rank function of the trained network.
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Figure 5. Rank function of an untrained network.

4. Conclusions

In the course of the research work, a neural network model was obtained, which allows,
using the oscillogram of the power consumption of the encryption board, to restore the
encryption key. The ASCAD dataset was used as the initial data, containing oscillograms,
encryption keys, source texts, and points of interest—outputs from the Sbox function of the
third round of the AES-128 cipher. The model is a convolutional neural network consisting
of four convolutional and two fully connected layers, with Softmax activation function
and CrossEntropyLoss as loss function. The quality of the resulting network was verified
by the classical method for energy consumption analysis problems, namely, using the
rank function.
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