
Citation: Memon, M.; Unar, A.A.;

Ahmed, S.S.; Daudpoto, G.H.; Jaffari,

R. Feature-Based Semi-Supervised

Learning Approach to Android

Malware Detection. Eng. Proc. 2023,

32, 6. https://doi.org/10.3390/

engproc2023032006

Academic Editors: Muhammad

Faizan Shirazi, Saba Javed,

Sundus Ali and Muhammad

Imran Aslam

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Feature-Based Semi-Supervised Learning Approach to Android
Malware Detection †

Mariam Memon 1,*, Adil Ahmed Unar 1, Syed Saad Ahmed 2, Ghulam Hussain Daudpoto 1 and Rabeea Jaffari 1,*

1 Software Engineering Department, Mehran University of Engineering and Technology, Jamshoro 76062,
Pakistan; adilahmedaptech@gmail.com (A.A.U.); ghullamhussaindpo@gmail.com (G.H.D.)

2 Computer Systems Engineering Department, Mehran University of Engineering and Technology,
Jamshoro 76062, Pakistan; saadjaff15@gmail.com

* Correspondence: mariam.jawaid@faculty.muet.edu.pk (M.M.); rabeea.jaffari@faculty.muet.edu.pk (R.J.)
† Presented at the 2nd International Conference on Emerging Trends in Electronic and Telecommunication

Engineering, Karachi, Pakistan, 15–16 March 2023.

Abstract: The development of signature-based methods or Machine Learning (ML) techniques on
static data has dominated automated malware detection on android platforms. However, these
techniques may not detect dangerous activities that only manifest during runtime. Furthermore,
there is already a significant volume of unlabeled malware data available, making the production of
datasets through supervised ML approach of manual labelling expensive. For anti-virus researchers,
the process of malware development poses a significant engineering challenge because they lack an
effective method for capturing potentially new harmful files while removing clean and well-known
files. In this research, we propose a semi-supervised ML technique to detect android malware from
android permissions and Application Programmer Interface (API) call logs. The ML technique is
incorporated into an android application to scan the installed applications and detect the correspond-
ing levels of maliciousness with success. The results depict the feasibility of our proposed method
and application.

Keywords: malware detection; android malware; static analysis; machine learning; semi-supervised
learning

1. Introduction

The past decade has experienced an increasing number of mobile devices with an-
droid being the most popular operating system for these devices [1]. Android devices
have increased in quantity from merely 38 in 2009 to an overwhelming number of over
20,000 devices in 2016 [2]. The popularity and pervasiveness of android devices makes
them an attractive target for malicious offenders. The more these devices grow, the more
we have experienced the growth of Android malware. As per the reports from Statista,
Android malware has increased to 26.6 million in March 2018 [3]. Similar reports from
G Data confirm that Android malware has reached 3.2 million and it increased by 40%
year-on-year in the third quarter of 2018 [4]. Android malware is hidden inside various
applications available in the Android market and gets installed on an individual’s Android
device without any explicit permission.

Android malware not only threatens the end user’s privacy, but also lessens the trust
on security policies of Android devices. The typical behavior of these malicious applications
includes stealing and modifying user information, disabling a mobile device, maliciously
controlling the mobile device, browser hijacking, and so on [5,6]. The threats posed by
Android malware can be addressed via three major malware analysis techniques namely
the static, dynamic, and hybrid analysis techniques. Static techniques detect malware prior
to the application installation by scanning and traversing all possible execution paths of the
android package kit (APK) to identify malware signatures. Thus, these techniques detect

Eng. Proc. 2023, 32, 6. https://doi.org/10.3390/engproc2023032006 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2023032006
https://doi.org/10.3390/engproc2023032006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0001-5860-944X
https://doi.org/10.3390/engproc2023032006
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2023032006?type=check_update&version=1

Eng. Proc. 2023, 32, 6 2 of 7

malware quickly without running the android application [7]. On the other hand, Dynamic
techniques detect malware by executing the APK [8]. Compared to static techniques, dy-
namic techniques are more time-consuming, resource intensive, and fail to identify the
parts of code outside the monitoring range’s execution [9]. Although scalable, the static
techniques also suffer from certain issues, such as java reflection and dynamic code load-
ing [10]. Hybrid analysis techniques integrate static and dynamic techniques to improve the
malware detection accuracy, but result in a waste of space and time to detect and analyze
the huge number of malware samples [11]. Major problems pertaining to all the discussed
traditional detection techniques are that either these can only detect malware with known
signatures (static) or either the scanning process to detect malwares is a time and resource
consuming task (hybrid and dynamic).

Researchers and practitioners are using ML to successfully detect android malware.
Contrary to the traditional detection practices, ML can detect more sophisticated malware
with unknown signatures and reduces the time-consuming process of traditional analysis
methods [12]. ML-based Android malware detection works by training a ML model on a
set of features, then utilizing the trained model to detect the malware. Features employed
to train the ML models for Android malware detection include permissions, API call logs,
network addresses, code metrics, malware signatures, and so on [13]. The ML techniques
can broadly be divided into three categories, namely, supervised, unsupervised, and semi-
supervised techniques. The supervised techniques need labelled data for accurate detection
while the unsupervised techniques model a set of inputs without any labelled data, but
yield lower performances than supervised methods. Semi-supervised techniques combine
the supervised and unsupervised techniques to yield an optimal detector without huge
amount of labelled data [14].

In this research, we propose a semi-supervised based ML technique to Android
malware detection. Our method takes the permission and component information along
with the API call logs of the android application as features to train a semi-supervised Naïve
Bayes classifier [15] algorithm to detect android malware. These features are extracted from
a set of labelled (malware and genuine software) and unlabeled examples to create an ML
Naïve Bayes classifier. The proposed ML method is an advancement in Android malware
detection to detect sophisticated malware with unknown signatures efficiently without the
use of excessively labelled data.

The rest of the paper is organized as follows: Section 2 presents the methodology to
implement the proposed semi-supervised ML technique for efficient Android malware
detection; Section 3 discusses the results of the proposed method followed by conclusion
and future work at the end.

2. Methodology

The methodology for the proposed feature-based semi-supervised ML approach to
android malware detection is depicted in Figure 1.

As seen from Figure 1, the proposed technique has two data sources: Google Play Store
for benign applications, and Virus Total for malicious applications. The APK files collected
from these sources are run on a sandbox of emulators to extract meaningful features to
distinguish them. Once the dataset is created, it is used for training our model using a
semi-supervised approach. This model becomes the base of our android malware detec-
tion application. Various mechanisms employed for the implementation of the proposed
technique are discussed in the subsequent subsections.

Eng. Proc. 2023, 32, 6 3 of 7Eng. Proc. 2023, 32, 6 3 of 7

Figure 1. Methodology for the proposed feature-based semi-supervised learning approach to an-
droid malware detection.

2.1. Android Application Packages Collection
A total of 54,332 android applications were collected from both the Google Play Store

and Virus Total in equal proportion to create a dataset of benign and malware applica-
tions, respectively. These applications were then distributed into 31 categories based on
the type of applications they were, such as games, e-commerce, educational, and so on.

2.2. Extracting Permissions and API Call Logs
The features space for the malware detection approach used in this work constitutes

of 1488 permissions and API call logs. These features are extracted by executing these
applications on emulators and saved in a CSV file in accordance with the category they
belonged to. The filtered API calls made while running the APK files are included in the
behavior data, and permissions are added as static data. A binary feature vector indicating
the presence of an API request or permission is used to represent each APK. For example,
if an APK is represented by X, then the feature vector associated with it will have the
following pattern (1, 0, … 0), where 1 indicates the existence of a particular API call or
permission and 0 otherwise. These features constitute the dataset employed for training
the ML model in the next step.

2.3. ML Model Training and Performance Evaluation
The finalized dataset was split into training and test sets in 80–20% ratio using Sci-

Kit Learn library. The training set was then utilized to train the semi-supervised naïve
Bayes (NB) classifier ML model. The performance of this model was evaluated against
other state-of-the-art ML models: K-Neighbor (KNN) Classifier [16], Decision Trees [17],
Random Forest (RBF) [18], and Support Vector Machines (SVM) [19], which were also
trained using the same training set. The 20% test set is used to evaluate the performance
of all the ML models as mentioned in Section 4 ahead. All models were trained using
Python TensorFlow [20].

2.4. Malware Detection Application Implementation
The Malware detection App is developed using Java and Python as its central pro-

gramming languages. Android Studio IDE is employed for front-end development
whereas TensorFlow [20], Sci-Kit Learn [21], Jupyter notebook [22], and Keras [23] are
utilized for the back end.

To identify fraudulent applications, the application makes use of API calls logs and
permissions. While scanning the device, it extracts permissions and API call logs of each
installed application and loads the trained Naïve Bayes (NB) ML model. A vector repre-

Figure 1. Methodology for the proposed feature-based semi-supervised learning approach to android
malware detection.

2.1. Android Application Packages Collection

A total of 54,332 android applications were collected from both the Google Play Store
and Virus Total in equal proportion to create a dataset of benign and malware applications,
respectively. These applications were then distributed into 31 categories based on the type
of applications they were, such as games, e-commerce, educational, and so on.

2.2. Extracting Permissions and API Call Logs

The features space for the malware detection approach used in this work constitutes
of 1488 permissions and API call logs. These features are extracted by executing these
applications on emulators and saved in a CSV file in accordance with the category they
belonged to. The filtered API calls made while running the APK files are included in the
behavior data, and permissions are added as static data. A binary feature vector indicating
the presence of an API request or permission is used to represent each APK. For example,
if an APK is represented by X, then the feature vector associated with it will have the
following pattern (1, 0, . . . 0), where 1 indicates the existence of a particular API call or
permission and 0 otherwise. These features constitute the dataset employed for training
the ML model in the next step.

2.3. ML Model Training and Performance Evaluation

The finalized dataset was split into training and test sets in 80–20% ratio using Sci-
Kit Learn library. The training set was then utilized to train the semi-supervised naïve
Bayes (NB) classifier ML model. The performance of this model was evaluated against
other state-of-the-art ML models: K-Neighbor (KNN) Classifier [16], Decision Trees [17],
Random Forest (RBF) [18], and Support Vector Machines (SVM) [19], which were also
trained using the same training set. The 20% test set is used to evaluate the performance of
all the ML models as mentioned in Section 4 ahead. All models were trained using Python
TensorFlow [20].

2.4. Malware Detection Application Implementation

The Malware detection App is developed using Java and Python as its central pro-
gramming languages. Android Studio IDE is employed for front-end development whereas
TensorFlow [20], Sci-Kit Learn [21], Jupyter notebook [22], and Keras [23] are utilized for
the back end.

To identify fraudulent applications, the application makes use of API calls logs and
permissions. While scanning the device, it extracts permissions and API call logs of each
installed application and loads the trained Naïve Bayes (NB) ML model. A vector represent-
ing these extracted features is subsequently supplied to our model which yields a prediction
score (ps) between 0 and 1 representing whether an application is trustworthy, malicious,

Eng. Proc. 2023, 32, 6 4 of 7

risky, or unknown. After extensive research, we identified the ranges of prediction scores
to classify the applications into different levels of maliciousness. These levels are specified
in Table 1.

Table 1. Categorization of applications based on the prediction scores from the trained ml model.

S.# Prediction Score (ps) Maliciousness Level

1 ps ≤ 0.5 Safe/Goodware
2 0.5 > ps < 0.75 Risky

It is noteworthy that if the Malware detection App is unable to extract permissions
and API calls from any application then the application is labelled as ‘Unknown’ and
its prediction score is not calculated. Figure 2 shows the summarized workflow of our
Malware Detection App.

Eng. Proc. 2023, 32, 6 4 of 7

senting these extracted features is subsequently supplied to our model which yields a pre-
diction score (ps) between 0 and 1 representing whether an application is trustworthy,
malicious, risky, or unknown. After extensive research, we identified the ranges of pre-
diction scores to classify the applications into different levels of maliciousness. These lev-
els are specified in Table 1.

Table 1. Categorization of applications based on the prediction scores from the trained ml model.

S.# Prediction Score (ps) Maliciousness Level
1 ps ≤ 0.5 Safe/Goodware
2 0.5 > ps < 0.75 Risky

It is noteworthy that if the Malware detection App is unable to extract permissions
and API calls from any application then the application is labelled as ‘Unknown’ and its
prediction score is not calculated. Figure 2 shows the summarized workflow of our Mal-
ware Detection App.

Figure 2. Summarized workflow of the Malware Detection App incorporating the proposed feature-
based semi supervised learning approach to android malware detection.

3. Results and Discussion
The results section is divided into two parts: (1) Performance evaluation of the pro-

posed feature-based semi supervised learning approach to android malware detection
against other state-of-the-art ML models, and (2) Malware detection results from the Mal-
ware Detection App.

3.1. ML Model Performance Evaluation Results
As already mentioned in Section 3, the proposed semi-supervised ML model based

on Naïve Bayes (NB) classifier is evaluated against four other (K-Neighbor (KNN) Classi-
fier, Decision Trees, Random Forest (RBF), and Support Vector Machine (SVM)) state-of-

Figure 2. Summarized workflow of the Malware Detection App incorporating the proposed feature-
based semi supervised learning approach to android malware detection.

3. Results and Discussion

The results section is divided into two parts: (1) Performance evaluation of the pro-
posed feature-based semi supervised learning approach to android malware detection
against other state-of-the-art ML models, and (2) Malware detection results from the Mal-
ware Detection App.

3.1. ML Model Performance Evaluation Results

As already mentioned in Section 3, the proposed semi-supervised ML model based on
Naïve Bayes (NB) classifier is evaluated against four other (K-Neighbor (KNN) Classifier,
Decision Trees, Random Forest (RBF), and Support Vector Machine (SVM)) state-of-the-art

Eng. Proc. 2023, 32, 6 5 of 7

ML models using the test set and the results are depicted in Figure 3 using the Accuracy
measure, which is defined in (1).

Accuracy =
Number o f correct predictions
Total number o f predictions

(1)

Eng. Proc. 2023, 32, 6 5 of 7

the-art ML models using the test set and the results are depicted in Figure 3 using the

Accuracy measure, which is defined in (1).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (1)

Figure 3. Performance evaluation of the proposed semi-supervised Naïve Bayes (NB) classifier

against four other (K-Neighbor (KNN) Classifier, Decision Trees, Random Forest (RBF), and Sup-

port Vector Machine (SVM)) state-of-the-art ML models on test set.

As depicted in Figure 3, our proposed Naïve Bayes (NB) classifier yields the best

performance with 93.256% accuracy on the test set, followed by Decision Trees with sec-

ond best performance of 90.124%, while the Support Vector Machines (SVM), Random

Forest (RBF), and K-Nearest Neighbors (KNN) yield accuracies of 88.227%, 82.453%, and

86.354%, respectively. These results depict the superiority of the Naïve Bayes (NB) semi-

supervised technique on the android malware detection test set using the permission and

API call log features.

3.2. Malware Detection App Results

The Malware Detection App based on the trained NB classifier scans the installed

android applications for malware and predicts a score (between 0–1) and the level of ma-

liciousness (as specified in Table 1). The results from the application are depicted in Figure

4.

Figure 4 depicts that the app successfully detects various applications as ‘safe’ or

‘malware’ based on the prediction score received from the trained ML model with the

range decided via Table 1.

Figure 4. Malware app detection results specifying the levels of maliciousness.

Figure 3. Performance evaluation of the proposed semi-supervised Naïve Bayes (NB) classifier
against four other (K-Neighbor (KNN) Classifier, Decision Trees, Random Forest (RBF), and Support
Vector Machine (SVM)) state-of-the-art ML models on test set.

As depicted in Figure 3, our proposed Naïve Bayes (NB) classifier yields the best
performance with 93.256% accuracy on the test set, followed by Decision Trees with second
best performance of 90.124%, while the Support Vector Machines (SVM), Random Forest
(RBF), and K-Nearest Neighbors (KNN) yield accuracies of 88.227%, 82.453%, and 86.354%,
respectively. These results depict the superiority of the Naïve Bayes (NB) semi-supervised
technique on the android malware detection test set using the permission and API call
log features.

3.2. Malware Detection App Results

The Malware Detection App based on the trained NB classifier scans the installed
android applications for malware and predicts a score (between 0–1) and the level of
maliciousness (as specified in Table 1). The results from the application are depicted in
Figure 4.

Figure 4 depicts that the app successfully detects various applications as ‘safe’ or
‘malware’ based on the prediction score received from the trained ML model with the range
decided via Table 1.

Eng. Proc. 2023, 32, 6 5 of 7

the-art ML models using the test set and the results are depicted in Figure 3 using the
Accuracy measure, which is defined in (1). 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (1)

Figure 3. Performance evaluation of the proposed semi-supervised Naïve Bayes (NB) classifier
against four other (K-Neighbor (KNN) Classifier, Decision Trees, Random Forest (RBF), and Sup-
port Vector Machine (SVM)) state-of-the-art ML models on test set.

As depicted in Figure 3, our proposed Naïve Bayes (NB) classifier yields the best
performance with 93.256% accuracy on the test set, followed by Decision Trees with sec-
ond best performance of 90.124%, while the Support Vector Machines (SVM), Random
Forest (RBF), and K-Nearest Neighbors (KNN) yield accuracies of 88.227%, 82.453%, and
86.354%, respectively. These results depict the superiority of the Naïve Bayes (NB) semi-
supervised technique on the android malware detection test set using the permission and
API call log features.

3.2. Malware Detection App Results
The Malware Detection App based on the trained NB classifier scans the installed

android applications for malware and predicts a score (between 0–1) and the level of ma-
liciousness (as specified in Table 1). The results from the application are depicted in Figure
4.

Figure 4 depicts that the app successfully detects various applications as ‘safe’ or
‘malware’ based on the prediction score received from the trained ML model with the
range decided via Table 1.

Figure 4. Malware app detection results specifying the levels of maliciousness. Figure 4. Malware app detection results specifying the levels of maliciousness.

Eng. Proc. 2023, 32, 6 6 of 7

4. Conclusions and Future Work

In this paper, we proposed a semi-supervised ML android malware detection tech-
nique using a combination of labelled and unlabeled permissions and API call logs data to
detect malware applications on an Android device. Our technique yielded the best accu-
racy of 93.256% when compared against other state-of-the-art ML models. The proposed
technique was employed to implement an android application (Malware Detection App) to
scan and classify various applications into different levels of maliciousness according to a
prediction score received via the proposed ML technique. The detection results strengthen
our confidence in the use of semi-supervised malware detection for anti-malware research.

As far as future work is concerned, various other features apart from the application
permissions and API call logs can be utilized to train the semi-supervised ML model for
android malware detection.

Author Contributions: Conceptualization, M.M. and A.A.U.; methodology, A.A.U. and G.H.D.;
software, A.A.U. and G.H.D.; validation, R.J. and S.S.A.; formal analysis, S.S.A.; investigation, G.H.D.
and S.S.A.; data curation, S.S.A.; writing—original draft preparation, M.M. and R.J.; writing—review
and editing, R.J.; visualization, R.J. and S.S.A.; supervision, M.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jkielty. Android v iOS Market Share. 2019. Available online: https://deviceatlas.com/blog/android-v-ios-market-share

(accessed on 20 July 2022).
2. Android. What Is Android. 2019. Available online: https://www.android.com/what-is-android/ (accessed on 1 August 2022).
3. Statista. Development of New Android Malware Worldwide from 2011 to 2018. 2019. Available online: https://www.statista.

com/statistics/680705/global-android-malwarevolume/ (accessed on 15 July 2022).
4. Data, G. The Number of New Malicious Android Samples Worldwide in Q3 2018 Reached 3.2 Million, an Increase of 40%

Year-On-Year. 2018. Available online: http://www.199it.com/archives/793849.html (accessed on 15 August 2022).
5. Zhou, Y.; Jiang, X. Dissecting android malware: Characterization and evolution. In Proceedings of the 2012 IEEE Symposium on

Security and Privacy, San Francisco, CA, USA, 20–23 May 2012; pp. 95–109.
6. B. V. Mobile Malware. 2013. Available online: https://www.webopedia.com/definitions/mobile-malware/ (accessed on

15 August 2022).
7. Castillo, C. Android Malware Past, Present, and Future. McAfee White Paper, Mobile Security Working Group, ed. 2011.

Available online: http://www.mcafee.com/us/resources/white-papers/wpandroid-malware-past-present-future.pdf (accessed
on 15 July 2022).

8. Sugunan, K.; Kumar, T.G.; Dhanya, K. Static and dynamic analysis for android malware detection. In Advances in Big Data and
Cloud Computing; Springer: Singapore, 2018; pp. 147–155.

9. Enck, W. Defending users against smartphone apps: Techniques and future directions. In Proceedings of the International
Conference on Information Systems Security, Kolkata, India, 15–19 December 2011; pp. 49–70.

10. Pan, Y.; Ge, X.; Fang, C.; Fan, Y. A systematic literature review of android malware detection using static analysis. IEEE Access
2020, 8, 116363–116379. [CrossRef]

11. Fang, Y.; Gao, Y.; Jing, F.; Zhang, L. Android malware familial classification based on dex file section features. IEEE Access 2020, 8,
10614–10627. [CrossRef]

12. Ahvanooey, M.T.; Li, Q.; Rabbani, M.; Rajput, A.R. A survey on smartphones security: Software vulnerabilities, malware, and
attacks. arXiv 2020, arXiv:2001.09406.

13. Jusoh, R.; Firdaus, A.; Anwar, S.; Osman, M.Z.; Darmawan, M.F.; Razak, M.F.A. Malware detection using static analysis in
Android: A review of FeCO (features, classification, and obfuscation). PeerJ Comput. Sci. 2021, 7, e522. [CrossRef] [PubMed]

14. Ayodele, T.O. Types of machine learning algorithms. New Adv. Mach. Learn. 2010, 3, 19–48.
15. Webb, G.I.; Keogh, E.; Miikkulainen, R. Naïve Bayes. Encycl. Mach. Learn. 2010, 15, 713–714.
16. Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [CrossRef]
17. Kingsford, C.; Salzberg, S.L. What are decision trees? Nat. Biotechnol. 2008, 26, 1011–1013. [CrossRef] [PubMed]

https://deviceatlas.com/blog/android-v-ios-market-share
https://www.android.com/what-is-android/
https://www.statista.com/statistics/680705/global-android-malwarevolume/
https://www.statista.com/statistics/680705/global-android-malwarevolume/
http://www.199it.com/archives/793849.html
https://www.webopedia.com/definitions/mobile-malware/
http://www.mcafee.com/us/resources/white-papers/wpandroid-malware-past-present-future.pdf
https://doi.org/10.1109/ACCESS.2020.3002842
https://doi.org/10.1109/ACCESS.2020.2965646
https://doi.org/10.7717/peerj-cs.522
https://www.ncbi.nlm.nih.gov/pubmed/34825052
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.1038/nbt0908-1011
https://www.ncbi.nlm.nih.gov/pubmed/18779814

Eng. Proc. 2023, 32, 6 7 of 7

18. Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [CrossRef] [PubMed]
19. Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [CrossRef] [PubMed]
20. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow:

Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467.
21. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
22. Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.E.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.B.; Grout, J.; Corlay, S.;

et al. Jupyter Notebooks-A Publishing Format for Reproducible Computational Workflows; IOS Press: Amsterdam, The Netherland, 2016;
Volume 2016.

23. Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing Ltd.: Birmingham, UK, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.17849/insm-47-01-31-39.1
https://www.ncbi.nlm.nih.gov/pubmed/28836909
https://doi.org/10.1038/nbt1206-1565
https://www.ncbi.nlm.nih.gov/pubmed/17160063

	Introduction
	Methodology
	Android Application Packages Collection
	Extracting Permissions and API Call Logs
	ML Model Training and Performance Evaluation
	Malware Detection Application Implementation

	Results and Discussion
	ML Model Performance Evaluation Results
	Malware Detection App Results

	Conclusions and Future Work
	References

