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Abstract: The development of signature-based methods or Machine Learning (ML) techniques on
static data has dominated automated malware detection on android platforms. However, these
techniques may not detect dangerous activities that only manifest during runtime. Furthermore,
there is already a significant volume of unlabeled malware data available, making the production of
datasets through supervised ML approach of manual labelling expensive. For anti-virus researchers,
the process of malware development poses a significant engineering challenge because they lack an
effective method for capturing potentially new harmful files while removing clean and well-known
files. In this research, we propose a semi-supervised ML technique to detect android malware from
android permissions and Application Programmer Interface (API) call logs. The ML technique is
incorporated into an android application to scan the installed applications and detect the correspond-
ing levels of maliciousness with success. The results depict the feasibility of our proposed method
and application.

Keywords: malware detection; android malware; static analysis; machine learning; semi-supervised
learning

1. Introduction

The past decade has experienced an increasing number of mobile devices with an-
droid being the most popular operating system for these devices [1]. Android devices
have increased in quantity from merely 38 in 2009 to an overwhelming number of over
20,000 devices in 2016 [2]. The popularity and pervasiveness of android devices makes
them an attractive target for malicious offenders. The more these devices grow, the more
we have experienced the growth of Android malware. As per the reports from Statista,
Android malware has increased to 26.6 million in March 2018 [3]. Similar reports from
G Data confirm that Android malware has reached 3.2 million and it increased by 40%
year-on-year in the third quarter of 2018 [4]. Android malware is hidden inside various
applications available in the Android market and gets installed on an individual’s Android
device without any explicit permission.

Android malware not only threatens the end user’s privacy, but also lessens the trust
on security policies of Android devices. The typical behavior of these malicious applications
includes stealing and modifying user information, disabling a mobile device, maliciously
controlling the mobile device, browser hijacking, and so on [5,6]. The threats posed by
Android malware can be addressed via three major malware analysis techniques namely
the static, dynamic, and hybrid analysis techniques. Static techniques detect malware prior
to the application installation by scanning and traversing all possible execution paths of the
android package kit (APK) to identify malware signatures. Thus, these techniques detect
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malware quickly without running the android application [7]. On the other hand, Dynamic
techniques detect malware by executing the APK [8]. Compared to static techniques, dy-
namic techniques are more time-consuming, resource intensive, and fail to identify the
parts of code outside the monitoring range’s execution [9]. Although scalable, the static
techniques also suffer from certain issues, such as java reflection and dynamic code load-
ing [10]. Hybrid analysis techniques integrate static and dynamic techniques to improve the
malware detection accuracy, but result in a waste of space and time to detect and analyze
the huge number of malware samples [11]. Major problems pertaining to all the discussed
traditional detection techniques are that either these can only detect malware with known
signatures (static) or either the scanning process to detect malwares is a time and resource
consuming task (hybrid and dynamic).

Researchers and practitioners are using ML to successfully detect android malware.
Contrary to the traditional detection practices, ML can detect more sophisticated malware
with unknown signatures and reduces the time-consuming process of traditional analysis
methods [12]. ML-based Android malware detection works by training a ML model on a
set of features, then utilizing the trained model to detect the malware. Features employed
to train the ML models for Android malware detection include permissions, API call logs,
network addresses, code metrics, malware signatures, and so on [13]. The ML techniques
can broadly be divided into three categories, namely, supervised, unsupervised, and semi-
supervised techniques. The supervised techniques need labelled data for accurate detection
while the unsupervised techniques model a set of inputs without any labelled data, but
yield lower performances than supervised methods. Semi-supervised techniques combine
the supervised and unsupervised techniques to yield an optimal detector without huge
amount of labelled data [14].

In this research, we propose a semi-supervised based ML technique to Android
malware detection. Our method takes the permission and component information along
with the API call logs of the android application as features to train a semi-supervised Naïve
Bayes classifier [15] algorithm to detect android malware. These features are extracted from
a set of labelled (malware and genuine software) and unlabeled examples to create an ML
Naïve Bayes classifier. The proposed ML method is an advancement in Android malware
detection to detect sophisticated malware with unknown signatures efficiently without the
use of excessively labelled data.

The rest of the paper is organized as follows: Section 2 presents the methodology to
implement the proposed semi-supervised ML technique for efficient Android malware
detection; Section 3 discusses the results of the proposed method followed by conclusion
and future work at the end.

2. Methodology

The methodology for the proposed feature-based semi-supervised ML approach to
android malware detection is depicted in Figure 1.

As seen from Figure 1, the proposed technique has two data sources: Google Play Store
for benign applications, and Virus Total for malicious applications. The APK files collected
from these sources are run on a sandbox of emulators to extract meaningful features to
distinguish them. Once the dataset is created, it is used for training our model using a
semi-supervised approach. This model becomes the base of our android malware detec-
tion application. Various mechanisms employed for the implementation of the proposed
technique are discussed in the subsequent subsections.
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Figure 1. Methodology for the proposed feature-based semi-supervised learning approach to android
malware detection.

2.1. Android Application Packages Collection

A total of 54,332 android applications were collected from both the Google Play Store
and Virus Total in equal proportion to create a dataset of benign and malware applications,
respectively. These applications were then distributed into 31 categories based on the type
of applications they were, such as games, e-commerce, educational, and so on.

2.2. Extracting Permissions and API Call Logs

The features space for the malware detection approach used in this work constitutes
of 1488 permissions and API call logs. These features are extracted by executing these
applications on emulators and saved in a CSV file in accordance with the category they
belonged to. The filtered API calls made while running the APK files are included in the
behavior data, and permissions are added as static data. A binary feature vector indicating
the presence of an API request or permission is used to represent each APK. For example,
if an APK is represented by X, then the feature vector associated with it will have the
following pattern (1, 0, . . . 0), where 1 indicates the existence of a particular API call or
permission and 0 otherwise. These features constitute the dataset employed for training
the ML model in the next step.

2.3. ML Model Training and Performance Evaluation

The finalized dataset was split into training and test sets in 80–20% ratio using Sci-
Kit Learn library. The training set was then utilized to train the semi-supervised naïve
Bayes (NB) classifier ML model. The performance of this model was evaluated against
other state-of-the-art ML models: K-Neighbor (KNN) Classifier [16], Decision Trees [17],
Random Forest (RBF) [18], and Support Vector Machines (SVM) [19], which were also
trained using the same training set. The 20% test set is used to evaluate the performance of
all the ML models as mentioned in Section 4 ahead. All models were trained using Python
TensorFlow [20].

2.4. Malware Detection Application Implementation

The Malware detection App is developed using Java and Python as its central pro-
gramming languages. Android Studio IDE is employed for front-end development whereas
TensorFlow [20], Sci-Kit Learn [21], Jupyter notebook [22], and Keras [23] are utilized for
the back end.

To identify fraudulent applications, the application makes use of API calls logs and
permissions. While scanning the device, it extracts permissions and API call logs of each
installed application and loads the trained Naïve Bayes (NB) ML model. A vector represent-
ing these extracted features is subsequently supplied to our model which yields a prediction
score (ps) between 0 and 1 representing whether an application is trustworthy, malicious,
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risky, or unknown. After extensive research, we identified the ranges of prediction scores
to classify the applications into different levels of maliciousness. These levels are specified
in Table 1.

Table 1. Categorization of applications based on the prediction scores from the trained ml model.

S.# Prediction Score (ps) Maliciousness Level

1 ps ≤ 0.5 Safe/Goodware
2 0.5 > ps < 0.75 Risky

It is noteworthy that if the Malware detection App is unable to extract permissions
and API calls from any application then the application is labelled as ‘Unknown’ and
its prediction score is not calculated. Figure 2 shows the summarized workflow of our
Malware Detection App.
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based semi supervised learning approach to android malware detection.

3. Results and Discussion

The results section is divided into two parts: (1) Performance evaluation of the pro-
posed feature-based semi supervised learning approach to android malware detection
against other state-of-the-art ML models, and (2) Malware detection results from the Mal-
ware Detection App.

3.1. ML Model Performance Evaluation Results

As already mentioned in Section 3, the proposed semi-supervised ML model based on
Naïve Bayes (NB) classifier is evaluated against four other (K-Neighbor (KNN) Classifier,
Decision Trees, Random Forest (RBF), and Support Vector Machine (SVM)) state-of-the-art
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ML models using the test set and the results are depicted in Figure 3 using the Accuracy
measure, which is defined in (1).

Accuracy =
Number o f correct predictions
Total number o f predictions

(1)
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Figure 3. Performance evaluation of the proposed semi-supervised Naïve Bayes (NB) classifier
against four other (K-Neighbor (KNN) Classifier, Decision Trees, Random Forest (RBF), and Support
Vector Machine (SVM)) state-of-the-art ML models on test set.

As depicted in Figure 3, our proposed Naïve Bayes (NB) classifier yields the best
performance with 93.256% accuracy on the test set, followed by Decision Trees with second
best performance of 90.124%, while the Support Vector Machines (SVM), Random Forest
(RBF), and K-Nearest Neighbors (KNN) yield accuracies of 88.227%, 82.453%, and 86.354%,
respectively. These results depict the superiority of the Naïve Bayes (NB) semi-supervised
technique on the android malware detection test set using the permission and API call
log features.

3.2. Malware Detection App Results

The Malware Detection App based on the trained NB classifier scans the installed
android applications for malware and predicts a score (between 0–1) and the level of
maliciousness (as specified in Table 1). The results from the application are depicted in
Figure 4.

Figure 4 depicts that the app successfully detects various applications as ‘safe’ or
‘malware’ based on the prediction score received from the trained ML model with the range
decided via Table 1.
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4. Conclusions and Future Work

In this paper, we proposed a semi-supervised ML android malware detection tech-
nique using a combination of labelled and unlabeled permissions and API call logs data to
detect malware applications on an Android device. Our technique yielded the best accu-
racy of 93.256% when compared against other state-of-the-art ML models. The proposed
technique was employed to implement an android application (Malware Detection App) to
scan and classify various applications into different levels of maliciousness according to a
prediction score received via the proposed ML technique. The detection results strengthen
our confidence in the use of semi-supervised malware detection for anti-malware research.

As far as future work is concerned, various other features apart from the application
permissions and API call logs can be utilized to train the semi-supervised ML model for
android malware detection.
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