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Abstract: We attempt to demonstrate optical phase switches in a typical light storage experiment. We
computed propagation dynamics of light pulses in sodium-23, rubidium-87, and potassium-39 vapors.
These vapors have the same tensorial sets of the density matrix with a nuclear spin I = 3/2. The
energy scheme is known as the double-Λ system. We considered an excitation mechanism in which
one of two Λ systems was excited by two-color pulses, probe, and drive, following the standard
electromagnetically induced transparency configuration. The probe channel contains delayed two
pulses after the first probe pulse. Gain is generated through the drive channel and is exposed
during propagation. We further investigated the spatiotemporal phase variations in the pulses
and found discrete phase distribution for different vapors. The spatiotemporal evolution of the
irreducible tensorial sets defines structural differential equations. Additionally, it is particularly
suitable for parallel processing. We hope our study finds an application in comparison to alkali vapor
magnetometry.

Keywords: alkali vapor; hyperfine structure; Gaussian train propagation; phase sensitivity;
Maxwell–Bloch equations

1. Introduction

Recently, light storage and its retrieval have become some of the fundamental aspects
of applied quantum technology (AQT) [1,2]. In the context of electromagnetically induced
transparency (EIT) [3,4], light storage has been verified experimentally in gases [3] and
solids [5]. In rubidium vapors, Buser et al. showed the storage of a single photon and its
retrieval [1]. Additionally, Korzeczek et al. proposed a technique for using a magnetic field
to control the deflection of the restored pulse [6]. Moreover, Xu et al. studied a double
Λ system that interacted with dual laser fields and discussed the influence of a magnetic
field on the relative phase of the radiation fields [7]. The double system becomes phase-
insensitive as it is reduced to the single Λ system. Once turning on the magnetic field, the
system transforms into a phase-sensitive one. In this paper, we are particularly interested
in the phase generated by the hyperfine splitting structure in alkali vapors and the phase
owing to pulse shaping during propagation. We assume that the hyperfine structure is
resolved, which is an adequate assumption for cooled atoms [8].

2. The Atomic System

The energy-level diagram of alkali metal atoms 23Na, 87Rb, and 39K is shown in
Figure 1. We consider the transitions n 2S1/2 – n 2P1/2, where n = 3, 5, and 4, for sodium,
rubidium and potassium vapors, respectively. The kets |1〉 =|n 2S1/2, F = 1〉, |2〉 =|n 2S1/2,
F = 2〉, and |3〉 =|n 2P1/2, F = 1〉, |4〉 =|n 2P1/2, F = 2〉 refer to the lower and upper hyperfine
states, respectively. The quantum number F stands for the total angular momentum. The
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probe and drive fields are detuned by ∆p and ∆r from the transitions |1〉↔ |3〉 and |2〉↔
|3〉, respectively. For experimental atomic data on alkali metal vapors, we refer to [9–12].
The fields with Rabi frequencies Ωp and Ωr connect the optical transitions |1〉→ |3〉, |4〉
and |2〉→ |3〉, |4〉, respectively.
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Figure 1. The atomic hyperfine structure of an alkali metal atom with nuclear spin I = 3/2. It 
corresponds to transitions 3 2S1/2 − 3 2P1/2, 5 2S1/2 − 5 2P1/2, and 4 2S1/2 − 4 2P1/2 for 23Na, 87Rb, and 39K 
vapors, respectively. The one-photon detuning for the probe and drive fields are denoted by Δp 
and Δr, respectively. The two-photon detuning Δω2,1 and Δω4,3 denote lower and upper hyperfine 
splitting, respectively. 
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formalism of Fiutak and Van Kranendonk has been extended for two-level atoms with a 
fine structure [13] to the case of multilevel atoms with hyperfine structures [16,17]. 

Let (z, t) represent space–time coordinates in the laboratory frame, and c is the light 
speed. The dimensionless retarded time is expressed as τ = γ(t − z/c) in a frame moving 
with the pulse. Additionally, γ is the spontaneous decay rate of the excited atomic-state 
P1/2. Furthermore, ζ = α′(z+ct) gives the dimensionless space variable, and α′ is the 
absorption coefficient. The atom field coupling is defined from v = dE/2√3, where d is the 
dipole moment of the optical transition and E is the electric field amplitude. The Rabi 
frequency is related to atom field coupling through the relation Ω = √8v. The relative 
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In the following, we describe the irreducible tensorial set (ITS) components 
associated with a nuclear spin I = 3/2. Recently, the mathematical formalism of ITS for 
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representing the total angular momentum. Additionally, m is the magnetic quantum 
number. Throughout, we will adopt convention ߩఈ,ఉሺி௠ሻ for the density matrix, and the 
notation ߩఈఉሺி௠ሻ denotes its counterpart on the product space [16]. 

Figure 2 shows the pulse profiles for Ωp(τ) and Ωr(τ) fields for different alkali 
vapors. At the entrance point ζ = 0, the pulses are truncated-Gaussian in shape and 
characterized by the same amplitude and different widths. The drive pulse is a single 
pulse where the probe consists of a train of Gaussian pulses. In sodium vapor, the pulses 
do not exactly overlap in time. 

Figure 1. The atomic hyperfine structure of an alkali metal atom with nuclear spin I = 3/2. It
corresponds to transitions 3 2S1/2 − 3 2P1/2, 5 2S1/2 − 5 2P1/2, and 4 2S1/2 − 4 2P1/2 for 23Na, 87Rb,
and 39K vapors, respectively. The one-photon detuning for the probe and drive fields are denoted
by ∆p and ∆r, respectively. The two-photon detuning ∆ω2,1 and ∆ω4,3 denote lower and upper
hyperfine splitting, respectively.

The time evolution of the reduced density matrix ρs(t) is given by the first-order
Liouville–von Neumann differential equation

− i
∂ρs(t)

∂t
= L̂tρs(t), } = 1, (1)

where L̂t stands for the Liouvillian super-operator in the Liouville space [13–15]. The
formalism of Fiutak and Van Kranendonk has been extended for two-level atoms with a
fine structure [13] to the case of multilevel atoms with hyperfine structures [16,17].

Let (z, t) represent space–time coordinates in the laboratory frame, and c is the light
speed. The dimensionless retarded time is expressed as τ = γ(t − z/c) in a frame moving
with the pulse. Additionally, γ is the spontaneous decay rate of the excited atomic-state
P1/2. Furthermore, ζ = α′(z + ct) gives the dimensionless space variable, and α′ is the
absorption coefficient. The atom field coupling is defined from v = dE/2

√
3, where d is

the dipole moment of the optical transition and E is the electric field amplitude. The Rabi
frequency is related to atom field coupling through the relation Ω =

√
8v. The relative

atom–field coupling becomes v = v/γ.
In the following, we describe the irreducible tensorial set (ITS) components associated

with a nuclear spin I = 3/2. Recently, the mathematical formalism of ITS for atoms and
molecules has been reviewed [18]. We have 28 density matrix components as ρ

(Fm)
αβ [16].

The indices α and β take values from 1 to 4, while F is the tensor rank, representing the
total angular momentum. Additionally, m is the magnetic quantum number. Throughout,
we will adopt convention ρ

(Fm)
α,β for the density matrix, and the notation ρ

(Fm)
αβ denotes its

counterpart on the product space [16].
Figure 2 shows the pulse profiles for Ωp(τ) and Ωr(τ) fields for different alkali vapors.

At the entrance point ζ = 0, the pulses are truncated-Gaussian in shape and characterized
by the same amplitude and different widths. The drive pulse is a single pulse where the
probe consists of a train of Gaussian pulses. In sodium vapor, the pulses do not exactly
overlap in time.
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Figure 2. Pulse profiles for Ωp(τ) and Ωr(τ) fields at the entrance point ζ = 0 for different alkali 
vapors. Time, as well as Rabi frequencies associated with the probe and drive channels, are 
presented in relative units. 

The first probe pulse in the train is wider than the drive pulse. Let w stand for the 
width of the pulse. Additionally, γ is the spontaneous decay rate of the n 2P1/2 state. 
Thus, we have the triple {{γNa,wNa}, {γRb,wRb}, {γK,wK}} for the alkali vapors. The width of 
the pulse in potassium vapor is diminished by wK = (γK/γNa)wNa. The shrinking in the 
widths of rubidium and potassium leads to well-resolved pulses without overlap. For 
the sodium case, this is not true, especially for the first and second pulses. It overlaps at 
the far wings. In our calculations, we have kept the amplitude v0 to be the same, 
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Figure 2. Pulse profiles for Ωp(τ) and Ωr(τ) fields at the entrance point ζ = 0 for different alkali
vapors. Time, as well as Rabi frequencies associated with the probe and drive channels, are presented
in relative units.

The first probe pulse in the train is wider than the drive pulse. Let w stand for the
width of the pulse. Additionally, γ is the spontaneous decay rate of the n 2P1/2 state.
Thus, we have the triple {{γNa,wNa}, {γRb,wRb}, {γK,wK}} for the alkali vapors. The width
of the pulse in potassium vapor is diminished by wK = (γK/γNa)wNa. The shrinking in the
widths of rubidium and potassium leads to well-resolved pulses without overlap. For the
sodium case, this is not true, especially for the first and second pulses. It overlaps at the
far wings. In our calculations, we have kept the amplitude v0 to be the same, according

to vNa
0

γNa
=

vRb
0

γRb
=

vK
0

γK
. The pulses are degenerate with respect to the field amplitudes. The

degeneracy can be resolved with respect to the intensity I as
(

Ω
γ

)2
= I

Is
, where Is is the

saturation intensity.
The time evolution of the dressed atom is determined by the Liouville–von Neumann-

type equation. We present it in the matrix form as

∂ρ(t)
∂t

= L
(

t, γ, ∆ω4,3, ∆ω2,1, ∆p, ∆r, vp, vr, γ
(k)
coll

)
ρ(t), (2)

where γ
(k)
coll represents the collisional relaxation rates of rank k. Equation (2) forms the Bloch

equation for the density matrix [16]. There are three Bloch sets of equations corresponding
to different vapors under consideration. Additionally, there are three sets of reduced field
equations which describe the space evolution. The reduced Maxwell field equations in the
slowly varying approximation can be separated as

∂vp(z,t)
∂z =

α′p√
6

[
ρ
(10)
3,1 (z, t)−

√
5ρ

(10)
4,1 (z, t)

]
,

∂vr(z,t)
∂z = α′r√

2

[
ρ
(10)
3,2 (z, t)− ρ

(10)
4,2 (z, t)

]
,

(3)

where αp and αr denote the absorption coefficients of the probe and drive fields, respectively.

Initially, we assume that the atoms occupy the first hyperfine level, i.e.,
√

3ρ
(00)
1,1 = 1,

which is beyond the so-called phaseonium medium introduced by Scully [19]. For such a
medium, Clader and Eberly have obtained interesting explicit analytical results for two-
color propagation in a single Λ medium for ultrashort pulse propagation [20]. In this
paper, the pulse arrangements are beyond the conventional electromagnetically induced
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transparency setup. It is more convenient to make use of relative units. The reduced
Maxwell field equations can be written as

∂
∂ς vp(ς, τ) =

√
6−1
[
ρ
(10)
3,1 (ς, τ)−

√
5ρ

(10)
4,1 (ς, τ)

]
,

∂
∂ς vr(ς, τ) =

√
2−1
[
ρ
(10)
3,2 (ς, τ)− ρ

(10)
4,2 (ς, τ)

]
,

∂
∂τ ρ(τ) = 1

γ L
(

τ, γ, ∆ω4,3, ∆ω2,1, ∆p, ∆r, vp, vr, γ
(k)
coll

)
ρ(t),

(4)

Initially, we assume real-valued Rabi frequencies, where phases of the fields and the
atomic dipoles are absent.

3. Numerical Results

The Rabi frequency associated with the probe and drive fields is expressed as
Ωp = 2

√
3vp and Ωr = 2

√
3vr in relative units, respectively. Figure 2 shows three time

sections for the interaction time. The duration T1 = {τ|τ ∈ [0 85]} is accompanied by an
extension of the probe pulse beyond the drive pulse. The duration T2 = {τ|τ ∈ (85 170]}
represents the second probe pulse in the pulse train and belongs to the first generated
pulse in the drive channel. The time T2 presents separate pulses in the probe channel for
rubidium and potassium vapors. The last time section, T3 = {τ|τ ∈ (170 250]}, represents
the time of the second generated pulse.

Figure 3 illustrates phase patterns resulting from the drive channel as a function of
time for different prolonged distances inside a sodium gas medium. Probe and drive fields
are resonantly coupled to the excited hyperfine state |3, F = 1〉. Phase patterns are presented
through weak criteria, in which the phases are mainly produced by the second (upper) and
perturbing Λ subsystem. Beyond that, at the injection point, ζ = 0, the drive pulse indicates
phase switching from zero to π, with a starting time of τ = 100 and corresponding to the T2
interval. Through such a period, the pulse envelope profile undergoes interference between
the far end of the first pulse and the leading edge or the front of the second pulse in the
train. Notably, the phase remains zero for times within the conventional EIT, T1 section.
For long time sections, such as T2 and T3, we have noticed the generation of drive pulses.
The generated pulses in the drive channel propagate across the medium with different
phase patterns.

Eng. Proc. 2023, 31, 69 4 of 7 
 

 

electromagnetically induced transparency setup. It is more convenient to make use of 
relative units. The reduced Maxwell field equations can be written as ߲߲߫ v௣ሺ߫, ߬ሻ ൌ 	ඥ6ିଵൣߩଷ,ଵሺଵ଴ሻሺ߫, ߬ሻ െ ,ସ,ଵሺଵ଴ሻሺ߫ߩ5√ ߬ሻ൧, ߲߲߫ v௥ሺ߫, ߬ሻ ൌ 	ඥ2ିଵൣߩଷ,ଶሺଵ଴ሻሺ߫, ߬ሻ െ ,ସ,ଶሺଵ଴ሻሺ߫ߩ ߬ሻ൧, ߲߲߬ ሺ߬ሻߩ ൌ ߛ1 ,൫߬ܮ ସ,ଷ,∆߱ଶ,ଵ,Δ௣,Δ௥߱∆,ߛ , ,௣ݒ ௥ݒ , ௖௢௟௟ሺ௞ሻߛ ൯	ߩሺݐሻ,	 

(4) 

Initially, we assume real-valued Rabi frequencies, where phases of the fields and 
the atomic dipoles are absent. 

3. Numerical Results 
The Rabi frequency associated with the probe and drive fields is expressed as Ωp = 

2√3vp and Ωr = 2√3vr in relative units, respectively. Figure 2 shows three time sections 
for the interaction time. The duration T1 = {τ|τ ∈ [0 85]} is accompanied by an extension 
of the probe pulse beyond the drive pulse. The duration T2 = {τ|τ ∈ (85 170]} represents 
the second probe pulse in the pulse train and belongs to the first generated pulse in the 
drive channel. The time T2 presents separate pulses in the probe channel for rubidium 
and potassium vapors. The last time section, T3 = {τ|τ ∈ (170 250]}, represents the time of 
the second generated pulse. 

Figure 3 illustrates phase patterns resulting from the drive channel as a function of 
time for different prolonged distances inside a sodium gas medium. Probe and drive 
fields are resonantly coupled to the excited hyperfine state |3, F = 1⟩. Phase patterns are 
presented through weak criteria, in which the phases are mainly produced by the 
second (upper) and perturbing Λ subsystem. Beyond that, at the injection point, ζ = 0, 
the drive pulse indicates phase switching from zero to π, with a starting time of τ = 100 
and corresponding to the T2 interval. Through such a period, the pulse envelope profile 
undergoes interference between the far end of the first pulse and the leading edge or the 
front of the second pulse in the train. Notably, the phase remains zero for times within 
the conventional EIT, T1 section. For long time sections, such as T2 and T3, we have 
noticed the generation of drive pulses. The generated pulses in the drive channel 
propagate across the medium with different phase patterns. 

 
Figure 3. Temporal phase trajectories are associated with the drive channel for different prolonged 
distances inside sodium vapor. The phase is presented in π units. 
Figure 3. Temporal phase trajectories are associated with the drive channel for different prolonged
distances inside sodium vapor. The phase is presented in π units.



Eng. Proc. 2023, 31, 69 5 of 7

As a result of the interplay between phase generation and time sections, this leads to
phase production, which is due to the interference between the rising and falling edges
of the neighborhood pulses and resulting from the detuning of upper hyperfine splitting.
Moreover, the width of the generated ±π switch is not regular for different sequences
through propagation.

We turn to the relative phase of the generated pulses in the drive channels concerning
the corresponding probe pulses. The relative phase is defined as

Φrp(ζ, τ) =
1
π

{
Φr(ζ, τ)− Φp(ζ, τ)

}
(5)

Figure 4 presents the relative phase at the same space points as located in Figure 3.
There are seven discrete phase distributions for alkali vapors. The first phase distribution,
S{Na,Rb,K}

1 , denotes the relative phase at the injection point of pulses. The relative phase
maintains the π value within the interaction period T1, that is mainly the duration of the
first pulses of the probe and drive pulses. At later times, interference becomes significant.
This results in phase switching to 0π and π again. At different prolonged distances inside
the medium, the relative phases S2 to S7 act as a compensation between the phases due
to complex pulse shaping reforms and the detuning of the upper hyperfine splitting. The
±π-switches are distributed among different phase trajectories. The phase distribution, S1,
in Figure 4, indicates deviations in phases regarding distinct pulse shaping effects. For long
time, there is an enhancement of phase switches produced in S{K,Rb}

2 , S{K,Rb}
3 , and S{K,Rb}

4
for rubidium and potassium vapors. Thus, one can distinguish such differences between
rubidium and potassium as a group and sodium. The relative phase switches in rubidium
and potassium stabilize at higher values than for sodium, for long distances. The phase
switch stabilizes at 0π or π for sodium vapors, whereas for potassium and rubidium, we
have the discrete distribution as S{K,Rb}

7 = {0π, π, π, 2π, 3π, 2π}. Accordingly, we have two

limits for the relative phase in sodium. It is either π or 0π at T3. However, in S{K,Rb}
7 , we

have only the values 2π and 3π. The atomic spontaneous decay rates for the potassium
and rubidium are close. Sodium vapors have the highest relaxation rate, and the upper
hyperfine splitting of rubidium is approximately 15 times bigger than that of potassium.
Therefore, we can conclude that our results depend strongly on the spontaneous relaxation
rate rather than the upper hyperfine splitting.
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4. Discussion

We have explored time-dependent discrete phase distributions in alkali atom vapors
concerning hyperfine structures with a nuclear spin I = 3/2. We provided an incomplete
scheme for the light storage-like experiments in which, for relativity short times, probe and
writing drive pulses are the exciting pulses with an absence of the read pulse and two pulses
added in the probe channel. The Stokes fields are generated in the drive channels toward
the minimum uncertainty products. The fields were real initially, and the system was
phase-sensitive. We have achieved this through the manipulation of wing–wing mutual
interaction. As a result, we have shown digital phase modulations with a discrete sequence
of values defined over different interval widths. The digital signals are developed as
rectangular π-pulses with a constant phase, except for step changes at interval boundaries
without ramping, i.e., the rectangular transitions are not smoothed. For relatively moderate
fields, the phase levels approach π, 0π for sodium and 3π, 2π for rubidium and potassium.
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