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Abstract: This study explores the effect of different types of bandages on the performance of an
epidermal antenna. Three identical dipole antennas are designed on three different types of bandages,
and the measured reflection coefficients, S11, show that the antennas resonate at the same frequency
despite the different types of fabric bandages. However, the antennas resonance frequency shifts to a
lower frequency when the antennas are mounted on the body. The transmission coefficient, S21, over
a 60 cm link with a standard RFID antenna is at least −30 dB, and −34 dB in free space and on the
body, respectively, demonstrating that the antenna is suitable for communication and wireless RF
power transfer in wearable applications.
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1. Introduction

Smart bandages incorporate various types of sensors to continuously monitor of
wound−related parameters, such as temperature, moisture level, pH level, and wound
oxygenation, in chronic wound care and management [1,2]. They provide wound data to
health practitioners, which allows them to remotely assess the healing of chronic wounds
without removing the bandage. The smart bandage requires a power source for embedded
electronics, and an antenna for wireless data transmission to an external device. An antenna
design is critical in the development of a wireless smart bandage since it can be used to
transmit data and harvest RF energy.

Several antenna designs for smart bandages have been presented in the literature.
In [3], a via free planar antenna, similar to an adhesive bandage, for medical telemetry
service is proposed. However, the antenna includes a ground plane, which increases the
thickness of the antenna and, therefore, is less suitable for wearable applications. Similarly,
in [4], a planar rectangular loop antenna is implemented in a battery−powered smart
bandage for wireless monitoring of wounds. The antenna is small in size but operates at
a higher frequency of about 2.4 GHz. Furthermore, near−field communications (NFC)
antennas are also being investigated for wireless smart bandages [5]. Such bandages have a
very low reading range, and need the bandage to be in close proximity to the reader, which
is especially undesirable for applications requiring continuous monitoring.

In this study, we proposed an all−fabric epidermal antenna operating at 915 MHz for
smart bandages in healthcare applications. The study also explored the effect of different
types of bandages on the epidermal antenna resonance frequency. Three identical dipoles
were designed on three different types of bandage materials. The performance of the
antennas in terms of the reflection coefficient in free space and in the presence of body were
investigated. Measurements demonstrate that the different types of bandage material have
no discernible effect on the antenna performance.
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2. Antenna Design

The epidermal antenna design is based on an electrical dipole with bending radiating
arms to reduce the antenna size. The radiating arms of the antenna were tuned to resonate
at 915 MHz in the presence of human tissue. The antennas were made of silk coated
Litz wires with a diameter of 0.36 mm. A PFAFF creative 3.0 sewing machine was used
to embroider Litz wires into three types of bandages: (i) cotton crepe bandage made of
cotton, (ii) self−fixing cohesive support bandage made of cotton/elastane with latex, and
(iii) adjustable cohesive bandage made of polypropylene and elastane, as shown in Figure 1.
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Figure 1. Manufactured prototype of the embroidered all−fabric epidermal antennas: (a) cotton
crepe bandage; (b) adjustable bandage; and (c) self−fixing bandage.

3. Measurements and Results
3.1. Reflection Coefficient

The reflection coefficient, S11, of the antennas were measured with a vector network
analyser (VNA) in free space and in the presence of the body, Figure 2a. Figure 2b shows
that the antennas resonate at around 1.10 GHz in free space, and 915 MHz when the
antennas are mounted on the body. It is observed that the different types of bandages have
no significant effect on the antenna resonance frequency, as shown in Figure 2b. However,
the resonance frequency shifts to a lower frequency of 915 MHz in the presence of the body.
This is due to the high dielectric constant and conductivity of human tissue.
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3.2. Transmission Coefficient

The experimental setup, Figure 3a, was used to measure the transmission coefficient,
S21, between the fabric antenna and an external antenna. A circularly polarized antenna,
with 8.2 dBi gain and operating at 915 MHz, was placed about 60 cm away from the
bandage antenna. Both antennas were connected to a vector network analyser (VNA)
and the transmission losses were measured. The measured S21 frequency responses are
depicted in Figure 3b for both cases with and without human tissue. The results show
that S21 is about −30 dB in free space, and −34 dB when mounted on the body. This
shows that for a 30 dBm RF input power, at least −4 dBm will be received by the receiver
antenna, indicating that the bandage antenna is suitable for RF power harvesting over a
short distance at the UHF band.
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4. Conclusions

All-fabric epidermal antenna fabricated on fabric bandages is demonstrated in this
paper. The resonance frequency of the antenna shifts to a lower frequency when it is
mounted on the body due to the high relative permittivity and conductivity of human
tissue. The measured results show that the different types of bandages have no significant
effect on the antenna resonance frequency. Transmission losses, S21, of the antenna is
−34 dB in the presence of human tissue when the external antenna is 60 cm away from the
arm on which the antenna is mounted. This means that the receiver antenna will receive at
least −4 dBm for an input power of 30 dBm. The antenna is flexible, lightweight, easy to
fabricate, and comfortable to the body, and, therefore, can be used to develop wireless and
battery−free smart bandages. The objective of our future work is to closely investigate all
fabric dipole array for RF information and RF power transfer for wearable applications.
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