
Citation: Bosse, S.; Kasundra, P.

Robust Underwater Image

Classification Using Image

Segmentation, CNN, and Dynamic

ROI Approximation. Eng. Proc. 2022,

27, 82. https://doi.org/10.3390/

ecsa-9-13218

Academic Editor: Stefano Mariani

Published: 1 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Robust Underwater Image Classification Using Image
Segmentation, CNN, and Dynamic ROI Approximation †

Stefan Bosse 1,* and Parth Kasundra 2

1 Department of Mathematics and Computer Science, Bremen, and Institute for Digitization,
University of Bremen, 28359 Bremen, Germany

2 Marinom GmbH, 28359 Bremen, Germany
* Correspondence: sbosse@uni-bremen.de
† Presented at the 9th International Electronic Conference on Sensors and Applications, 1–15 November 2022;

Available online: https://ecsa-9.sciforum.net/.

Abstract: Finding classified rectangular regions of interest (ROIs) in underwater images is still
a challenge, and more so if the images pose low quality with respect to illumination conditions,
sharpness, and noise. These ROIs can help humans find relevant regions in the image quickly
or they can be used as input for automated structural health monitoring (SHM). This task itself
should be conducted automatically, e.g., used for underwater inspection. Underwater inspections
of technical structures, e.g., piles of a sea mill energy harvester, typically aim to find material
changes in the construction, e.g., rust or pockmark coverage, to make decisions about repair and
to assess the operational safety. We propose and evaluate a hybrid approach with segmented
classification using small-scaled CNN classifiers (with fewer than 20,000 hyperparameters and 3M
unity vector operations) and a reconstruction of labelled ROIs by using an iterative mean and
expandable bounding box algorithm. The iterative bounding box algorithm combined with bounding
box overlap checking suppressed wrong spurious segment classifications and represented the best and
most accurate matching ROI for a specific classification label, e.g., surfaces with pockmark coverage.
The overall classification accuracy (true-positive classification) with respect to a single segment is
about 70%, but with respect to the iteratively expanded ROI bounding boxes, it is about 90%.

Keywords: image classification; region-of-interest detection; underwater

1. Introduction

The underwater inspection of technical structures, e.g., the construction parts of off-
shore wind turbines, such as piles, involves the identification of various parts in underwater
images. In this work using given videos/pictures, the following things can be included:

1. Background with water, bubbles, and fishes, summarised as feature class B;
2. Technical structure, e.g., a monopile of a wind turbine, summarised as feature class P;
3. Formation of coverage with marine vegetation or organisms on the surface of the

structure, summarised as feature class C.

Currently, for the inspection of monopiles, divers have to go underwater. However,
even if humans inspect the underwater surfaces (underwater by the diver or remotely), the
scenes are cluttered, and the identification of surface coverage is a challenge. Automated
visual inspection is desired to reduce maintenance and service times.

Finding classified rectangular regions of interest (ROIs) in underwater images is still
a challenge. These ROIs can help humans find relevant regions in the image quickly, or
they can be used as input for automated structural health monitoring (SHM). This task
itself should be done automatically, e.g., used for underwater inspection. Underwater
inspections of technical structures, e.g., piles of a sea mill energy harvester, typically aim

Eng. Proc. 2022, 27, 82. https://doi.org/10.3390/ecsa-9-13218 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/ecsa-9-13218
https://doi.org/10.3390/ecsa-9-13218
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-8774-6141
https://ecsa-9.sciforum.net/
https://doi.org/10.3390/ecsa-9-13218
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/ecsa-9-13218?type=check_update&version=1

Eng. Proc. 2022, 27, 82 2 of 12

to find material changes in the construction, e.g., rust or pockmark coverage, to make
decisions about repair and to assess the operational safety.

Images taken from video recordings during diving contain typical changing and
highly dynamic underwater scenes consisting of ROIs related to the above-introduced
class backgrounds (not relevant), technical construction surfaces, and modified surfaces
(rust/pockmark coverage), with the highest relevance.

The aim is the development of an automatic bounded region classifier that is at least
able to distinguish between background, construction, and construction + coverage classes.
The challenge is the low and varying image quality that typically appears in North and
East Sea underwater imaging. The images, typically recorded by a human diver or an AUV,
pose low contrast, varying illumination conditions and colours, different viewing angles
and spatial orientation and scale, and optical focus issues, overlaid by mud and bubbles
(e.g., from the air supply).

We proposed and evaluated a hybrid approach with segmented classification using
small-scaled CNN classifiers (with fewer than 10 layers and 100,000 hyperparameters) and
a reconstruction of labelled ROIs by using an iterative mean and expandable bounding box
algorithm. The iterative bounding box algorithm combined with bounding box overlap
checking suppressed wrong spurious segment classifications and represented the best and
most accurate matching ROIs for a specific classification label, e.g., surfaces with pockmark
coverage. The overall classification accuracy (true-positive classification) with respect to a
single segment is about 70%, but with respect to the iteratively expanded ROI bounding
boxes, it is about 90%.

The image segment classification and ROI detection algorithms should be capable of
being implemented into embedded systems, e.g., directly integrated in camera systems
with application-specific co-processor support.

The aim is to achieve an accuracy of at least 85–90% for the predicted images, with a
high degree of generalisation and independence from various image and environmental
parameters, such as lighting conditions, background colouration, and relevant classifica-
tion features.

2. Related Work

Overall, there is a lack of freely available image datasets from the underwater area,
as discussed by Chongyi Li et al. [1]. A possible image dataset from the underwater area
can be found in the Underwater Image Enhancement Benchmark (UIEB DS). These are
not specifically technical components, such as ship hulls. Further datasets for underwater
images are, for example, the Fish4Knowlege dataset (Fish4Knowledge DS) for the detec-
tion and acquisition of underwater targets; underwater images in the SUN dataset for
scene recognition and object detection (SUN DS); the MARIS dataset for Autonomous
Marine Robotics (MARIS DS); the Sea-thru dataset with 1100 underwater images with
range maps; Haze-line dataset with raw images, TIF files, camera calibration files and
range maps [2]. Chongyi Li et al., however, criticised that the listed datasets usually have
monotonous content, limited scenes, few degradation features and, above all, a lack of ref-
erence images. In addition, Mittal et al. criticised the lack of a large-scale dataset, which is
why they used data augmentation since it is impossible to train a CNN with scarce data [3].
Another dataset can be found in the ImageNet database, created by Yifeng Xu et al. [4]. The
ImageNet 2012 database includes 1000 classes with 15 million labelled high-resolution
images (ImageNet DS).

According to Mittal et al. [3] CNNs have already shown better predictive performance
than traditional image processing and machine learning methods.

Luo et al. evaluated pre-processing, segmentation, and post-processing for the accurate
classification of 108 plankton classes. The authors used greyscale images, which were
fraught with noise and unevenness in the greyscale and contrast. In flat fielding, a calculated
calibration frame is subtracted from the raw image. They used histogram normalisation to
normalise the contrast in each image, which allowed for better segmentation of the ROIs.

Eng. Proc. 2022, 27, 82 3 of 12

Extremely noisy images, i.e., those with a signal-to-noise ratio (SNR) below 25, were sorted
out. Then they used K-harmonic mean clustering to detect and segment the ROIs.

Deep et al. [5] proposed a CNN model and two CNN + shallow models for the
classification of living fish species. In their dataset, most of the images were noise-free but
out of focus. Therefore, the images were first pre-processed with an image sharpening
method to improve the edges in the images. They used a slightly modified Laplacian kernel,
where the sum of all the kernel elements was one instead of zero. This kernel produced a
colour image, while the original Laplacian kernel produced a binary image.

3. Image Sets

The image set consisted of different underwater images with a high variance in
illumination conditions, spatial orientation, noise (bubbles, blurring), and colour palettes.
The images were snapshots taken from videos recorded by a human diver. The images
were used for supervised ML requiring explicit labelling. The labelling was done by hand
by interactively drawing labelled closed polygon paths and assigning regions of the images
to a specific class. There were remaining areas with no/unknown labelling.

4. Methods and Architecture

In addition to the evaluation of suitable algorithms and classification models, this
work compared two different software frameworks:

1. Native software code using the widely deployed TensorFlow-Keras with GPU sup-
port [6];

2. Pure JavaScript code using PSciLab with WorkBook and Workshell [6] (processed by
a Web browser and node.js), using a customised version of the ConvNet.js trainer
for CNNs.

The second framework (see Figure 1) stores all the data in SQL databases and trains
the models (JSON format). The SQL databases (SQLite3) can be accessed remotely via an
SQLjson Remote Procedure Call (RPC) interface. The TensorFlow framework uses the local
filesystem for data storage. For any computer processing, TensorFlow needs a copy of the
entire dataset.

Eng. Proc. 2022, 27, 82 3 of 13

normalisation to normalise the contrast in each image, which allowed for better segmen-
tation of the ROIs. Extremely noisy images, i.e., those with a signal-to-noise ratio (SNR)
below 25, were sorted out. Then they used K-harmonic mean clustering to detect and seg-
ment the ROIs.

Deep et al. [5] proposed a CNN model and two CNN + shallow models for the clas-
sification of living fish species. In their dataset, most of the images were noise-free but out
of focus. Therefore, the images were first pre-processed with an image sharpening method
to improve the edges in the images. They used a slightly modified Laplacian kernel, where
the sum of all the kernel elements was one instead of zero. This kernel produced a colour
image, while the original Laplacian kernel produced a binary image.

3. Image Sets
The image set consisted of different underwater images with a high variance in illu-

mination conditions, spatial orientation, noise (bubbles, blurring), and colour palettes.
The images were snapshots taken from videos recorded by a human diver. The images
were used for supervised ML requiring explicit labelling. The labelling was done by hand
by interactively drawing labelled closed polygon paths and assigning regions of the im-
ages to a specific class. There were remaining areas with no/unknown labelling.

4. Methods and Architecture
In addition to the evaluation of suitable algorithms and classification models, this

work compared two different software frameworks:
1. Native software code using the widely deployed TensorFlow-Keras with GPU sup-

port [6];
2. Pure JavaScript code using PSciLab with WorkBook and Workshell [6] (processed by

a Web browser and node.js), using a customised version of the ConvNet.js trainer for
CNNs.
The second framework (see Figure 1) stores all the data in SQL databases and trains

the models (JSON format). The SQL databases (SQLite3) can be accessed remotely via an
SQLjson Remote Procedure Call (RPC) interface. The TensorFlow framework uses the lo-
cal filesystem for data storage. For any computer processing, TensorFlow needs a copy of
the entire dataset.

Both software frameworks use the same input data and functionally and structurally
equivalent CNN architectures.

Figure 1. Web browser-based software architecture with remote worker processes [1] Figure 1. Web browser-based software architecture with remote worker processes [1].

Both software frameworks use the same input data and functionally and structurally
equivalent CNN architectures.

The dataflow architecture is shown in Figure 2. Starting with the image segmentation
process, the segments are the input for the CNN classifier. The output of the segment

Eng. Proc. 2022, 27, 82 4 of 12

classifier is used to create a feature map image, that is finally processed by point clustering
and bounding box estimation.

Eng. Proc. 2022, 27, 82 4 of 13

The dataflow architecture is shown in Figure 2. Starting with the image segmentation
process, the segments are the input for the CNN classifier. The output of the segment
classifier is used to create a feature map image, that is finally processed by point clustering
and bounding box estimation.

Figure 2. Overview of the data flow architecture and the used algorithms.

4.1. Image Segmentation
On the first processing level, the input images were segmented into equally sized

sub-images, e.g., RGB segments of 64 × 64 pixels. Each image segment was related to one
of the classes σ ∈ {B,P,C} or unknown (U). A conventional CNN with two convolutional
layers was used to predict the class σ ∈ {B,P,C} for each single image segment. The CNN
was trained with a sub-set of randomly chosen labelled image segments.

4.2. Convolutional Neural Network Architecture
Four different CNN architectures and parameter settings were evaluated and are

summarised in Table A1 (Appendix A), assuming segment input site data volumes of 64
× 64 × 3 (RGB) elements (derived from the RGB video images). There were two convolu-
tional layers in all architectures, and the hyperparameter number ranged from 20k to 60k.
Both software frameworks used the same CNN architecture and configuration. The small-
est CNN model, compared to the largest, required about 1/4 of the unit vector operations
and about 1/3 of the hyperparameters that had to be trained.

4.3. Image ROI Classification
The basic algorithm and workflow for automated ROI classification is as follows (see

Figure 2):
1. Segmentation of each input image with static size segments;
2. Parallel prediction of the image segment class by the CNN;
3. Creation of a class prediction matrix C^ with rows and columns representing the spa-

tial distribution of the image segments in the original input image; the matrix M is
considered a point cloud with cartesian point coordinates related to the matrix
〈row,column〉 tuple;

4. Computation of spatial class element clusters using the DBSCAN algorithm; the pa-
rameters 6epsilon and minPoints must be chosen carefully (e.g., ε = 2, minPoints = 5);

5. Applying a mean bounding box (MBB) algorithm to the point elements of each clus-
ter computing the mass-centred average bounding box (typically under-sized with
respect to the representative points in the clusters);

6. Applying an MBB extension iteratively to grow the bounding box but still suppress-
ing spurious (wrong) image segments;

Figure 2. Overview of the data flow architecture and the used algorithms.

4.1. Image Segmentation

On the first processing level, the input images were segmented into equally sized
sub-images, e.g., RGB segments of 64 × 64 pixels. Each image segment was related to one
of the classes σ ∈ {B,P,C} or unknown (U). A conventional CNN with two convolutional
layers was used to predict the class σ ∈ {B,P,C} for each single image segment. The CNN
was trained with a sub-set of randomly chosen labelled image segments.

4.2. Convolutional Neural Network Architecture

Four different CNN architectures and parameter settings were evaluated and are
summarised in Table A1 (Appendix A), assuming segment input site data volumes of
64 × 64 × 3 (RGB) elements (derived from the RGB video images). There were two con-
volutional layers in all architectures, and the hyperparameter number ranged from 20k
to 60k. Both software frameworks used the same CNN architecture and configuration.
The smallest CNN model, compared to the largest, required about 1/4 of the unit vector
operations and about 1/3 of the hyperparameters that had to be trained.

4.3. Image ROI Classification

The basic algorithm and workflow for automated ROI classification is as follows (see
Figure 2):

1. Segmentation of each input image with static size segments;
2. Parallel prediction of the image segment class by the CNN;
3. Creation of a class prediction matrix Cˆ with rows and columns representing the

spatial distribution of the image segments in the original input image; the matrix
M is considered a point cloud with cartesian point coordinates related to the matrix
〈row,column〉 tuple;

4. Computation of spatial class element clusters using the DBSCAN algorithm; the
parameters 6epsilon and minPoints must be chosen carefully (e.g., ε = 2, minPoints = 5);

5. Applying a mean bounding box (MBB) algorithm to the point elements of each
cluster computing the mass-centred average bounding box (typically under-sized
with respect to the representative points in the clusters);

6. Applying an MBB extension iteratively to grow the bounding box but still suppressing
spurious (wrong) image segments;

7. Remove the small(er) bonding boxes covered by larger bounding boxes (either with
a different or the same class) or shrink the overlapping bounding boxes of different
classes by priority (shrink the less important regions);

Eng. Proc. 2022, 27, 82 5 of 12

8. Mark the original input image with ROI rectangles computed in the previous step.

Iteratively expanded bounding boxes from different classes can overlap, which is an
undesired result. To reduce overlapping conflicts, a class priority is introduced. In this
work, coverage on construction surfaces had the highest priority to be detected accurately.
After the ROI expansion was performed, the overlapping bounding boxes with lower
priority classes were shrunk until all overlapping conflicts were resolved.

4.4. Training and Labelling

For training, a selected and representative sub-set of images (246 images) were ex-
tracted from the diving video. Each image was labelled manually by adding relevant and
strong ROI polygons to each image. Based on the labelled and closed polygon paths, each
image was segmented with a static segment size. All segments from an image were stored
in a SQL database table. With respect to the given image size of 1920 × 1080 pixels and
the chosen segment size of 64 × 64 pixels, there were about 120,000 small, labelled image
segments. The segment images not covered by any of the labelled polygon paths were
automatically marked with the class “Unknown”. Only strong and clearly classifiable
regions were created, as shown in Figure 3. The remaining unlabelled regions were not
considered for the training process.

Eng. Proc. 2022, 27, 82 5 of 13

7. Remove the small(er) bonding boxes covered by larger bounding boxes (either with
a different or the same class) or shrink the overlapping bounding boxes of different
classes by priority (shrink the less important regions);

8. Mark the original input image with ROI rectangles computed in the previous step.
Iteratively expanded bounding boxes from different classes can overlap, which is an

undesired result. To reduce overlapping conflicts, a class priority is introduced. In this
work, coverage on construction surfaces had the highest priority to be detected accurately.
After the ROI expansion was performed, the overlapping bounding boxes with lower pri-
ority classes were shrunk until all overlapping conflicts were resolved.

4.4. Training and Labelling
For training, a selected and representative sub-set of images (246 images) were ex-

tracted from the diving video. Each image was labelled manually by adding relevant and
strong ROI polygons to each image. Based on the labelled and closed polygon paths, each
image was segmented with a static segment size. All segments from an image were stored
in a SQL database table. With respect to the given image size of 1920 × 1080 pixels and the
chosen segment size of 64 × 64 pixels, there were about 120,000 small, labelled image seg-
ments. The segment images not covered by any of the labelled polygon paths were auto-
matically marked with the class “Unknown”. Only strong and clearly classifiable regions
were created, as shown in Figure 3. The remaining unlabelled regions were not considered
for the training process.

The training process randomly selected a balanced sub-set of the image segments
(e.g., 1000) with respect to the class label distribution, i.e., it provided a normal distribu-
tion of the class labels among the training and validation datasets. Multiple models were
trained in parallel. Each model was trained with a different set of segments and with ran-
dom initialisation of the model parameters using Monte Carlo simulation.

Figure 3. Example of the manual labelling of polygon path bounded regions. (Top, Left) Original
image. (Top, Right) With labelled polygon regions. (Bottom) Segmented image

The TensorFlow framework used an Adam optimiser with a very low learning rate
of 0.001. The ConvNetJS CNN framework used an adaptive gradient optimiser with a

Figure 3. Example of the manual labelling of polygon path bounded regions. (Top, Left) Original
image. (Top, Right) With labelled polygon regions. (Bottom) Segmented image.

The training process randomly selected a balanced sub-set of the image segments (e.g.,
1000) with respect to the class label distribution, i.e., it provided a normal distribution of
the class labels among the training and validation datasets. Multiple models were trained
in parallel. Each model was trained with a different set of segments and with random
initialisation of the model parameters using Monte Carlo simulation.

The TensorFlow framework used an Adam optimiser with a very low learning rate
of 0.001. The ConvNetJS CNN framework used an adaptive gradient optimiser with a
moderate learning rate of 0.1 and a high momentum of 0.9. Each convolution layer had
an l2 regularisation loss with l2 = 0.01 in the TensorFlow framework and l2 = 0.001 in the
ConvNetJS framework.

Eng. Proc. 2022, 27, 82 6 of 12

4.5. Mean Bounding Box Algorithm

In this section, the mean bounding box (MBB) algorithm is introduced, applied after
the point clustering using the DBSCAN algorithm, shown in Figure 4a. There is a set of
class symbols Σ and a class matrix M̂ consisting of elements that label an image segment
with a class, so that:

Σ = {B, P, C, U}σ ∈ ΣM̂ =


σ1,1 . . . σ1,j
σ2,1 . . . σ2,j
.
σi,1 . . . σi,j

 (1)

Eng. Proc. 2022, 27, 82 6 of 13

moderate learning rate of 0.1 and a high momentum of 0.9. Each convolution layer had an
l2 regularisation loss with l2 = 0.01 in the TensorFlow framework and l2 = 0.001 in the
ConvNetJS framework.

4.5. Mean Bounding Box Algorithm
In this section, the mean bounding box (MBB) algorithm is introduced, applied after

the point clustering using the DBSCAN algorithm, shown in Figure 4a. There is a set of
class symbols Σ and a class matrix M consisting of elements that label an image segment
with a class, so that:

  

1,1 1,

2,1 2,

,1 ,

..

..
, , ,

..
..

j

j

i i j

B P C U M

 
 



 

 
 
      
  
 

 (1)

The matrix M^ is flattened to a point cloud list set P = {pσ}σ∈Σ. Each class set p contains
the matrix positions of the respective elements, i.e., pσ = {〈i, j〉}, with all points classified by
the CNN to the same label class σ ∈ Σ.

DBSCAN clustering returns a group list of points that satisfy the clustering condi-
tions, which is one point group list for each label class, as shown in Figure 4a.

      
   

2

: , , ,.. ,

: , 1,2,3,..,

,

j k lk lj

i i

i

DBSCAN P p p p j k l

P p i n

p i j R

  



 

 (2)

It was assumed that a cluster contained a majority of correctly classified points (seg-
ments), and a minority of scattered wrongly classified points.

Figure 4. (a) DBSCAN Clustering (b) Iterative bounding box expansion (c) final overlapping con-
flict shrinking.

The MBB algorithm computes points 〈x1, y1, x2, y2〉 of a bounding box that is centred
at the mass-of-centre point c of all points of a cluster, and the outer sides given by the
vectorial mean centred position of all points above or below and left or right form the c
point, as shown in Algorithm 1 and in Figure 4b.

Figure 4. (a) DBSCAN Clustering (b) Iterative bounding box expansion (c) final overlapping conflict
shrinking.

The matrix M̂ is flattened to a point cloud list set P = {pσ}σ∈Σ. Each class set p contains
the matrix positions of the respective elements, i.e., pσ = {〈i, j〉}, with all points classified by
the CNN to the same label class σ ∈ Σ.

DBSCAN clustering returns a group list of points that satisfy the clustering conditions,
which is one point group list for each label class, as shown in Figure 4a.

DBSCAN : P→
{{

pj
}

j, {pk}k, {pl}l , . . .
}

, j 6= k 6= l
P : {pi}i, i = {1, 2, 3, . . . , n}
pi =< i, j >∈ R2

(2)

It was assumed that a cluster contained a majority of correctly classified points (seg-
ments), and a minority of scattered wrongly classified points.

The MBB algorithm computes points 〈x1, y1, x2, y2〉 of a bounding box that is centred
at the mass-of-centre point c of all points of a cluster, and the outer sides given by the
vectorial mean centred position of all points above or below and left or right form the c
point, as shown in Algorithm 1 and in Figure 4b.

Eng. Proc. 2022, 27, 82 7 of 12

Algorithm 1. Mean bounding box algorithm applied to a two-dimensional point cloud.

1: function massOfCentre(points)
2: pc = {x = 0, y = 0}
3: ∀p ∈ points do
4: pc.x: = pc.x + p.x, pc.y: = pc.y + p.y
5: done
6: pc: = pc/|points|
7: return pc
8: end
9: function meanBBox(points)
10: pc = massOfCentre(points)
11: // Initial bbox around mass-of-centre point
12: b = {x1 = pc.x, y1 = pc.y, x2 = pc.x, y2 = pc.y}
13: c = {x1 = 1, y1 = 1, x2 = 1, y2 = 1}
14: ∀p ∈ points do
15: // each point extends the bbox
16: if p.x > pc.x then incr(c.x2), b.x2: = b.x2 + p.x
17: if p.x < pc.x then incr(c.x1), b.x1: = b.x1 + p.x
18: if p.y > pc.y then incr(c.y2), b.y2: = b.y2 + p.y
19: if p.y < pc.y then incr(c.y1), b.y1: = b.y1 + p.y
20: done
21: // normalise bbox coordinates
22: b.x1: = b.x1/c.x1, b.x2: = b.x2/c.x2
23: b.y1: = b.y1/c.y1, b.y2: = b.y2/c.y2
24: return b
25: end

The expansion of a previously computed bounding box is carried out by all the points
outside of the current bounding box, performing the next extension iteration (see Figure 4b).
Again, spatial position averaging is performed, extending the boundary of the bound box,
as shown in Algorithm 2. The expansion is performed iteratively. Each step includes
more points but increases the probability that the bound box is over-sized with respect to
spurious outlier points that resulted from wrong CNN classifications.

Algorithm 2. Mean bounding box expansion applied to a two-dimensional point cloud and mean
bound box.

1: function meanBBoxExpand(points, b)
2: pc = massOfCentre(points)
3: // start with the old bbox
4: b2 = {x1 = b.x, y1 = b.y, x2 = b.x, y2 = b.y}
5: c = {x1 = 1, y1 = 1, x2 = 1, y2 = 1}
6: ∀p ∈ points do
7: // each point outside the old bbox extends the new bbox
8: if p.x > b.x then incr(c.x2), b2.x2: = b2.x2 + p.x
9: if p.x < b.x then incr(c.x1), b2.x1: = b2.x1 + p.x
10: if p.y > b.y then incr(c.y2), b2.y2: = b2.y2 + p.y
11: if p.y < b.y then incr(c.y1), b2.y1: = b2.y1 + p.y
12: done
13: // normalise bbox coordinates
14: b2.x1: = b2.x1/c.x1, b2.x2: = b2.x2/c.x2
15: b2.y1: = b2.y1/c.y1, b2.y2: = b2.y2/c.y2
16: return b2
17: end

In the case of high iteration loop values, bounding boxes from different classes can
overlap. To reduce overlapping conflicts, a class priority is introduced, layering the class
regions by relevance. After the ROI expansion is complete, overlapping bounding boxes

Eng. Proc. 2022, 27, 82 8 of 12

with a lower priority are shrunk until all overlapping conflicts are resolved (see Figure 4c).
Commonly, more than one side of the bounding box can be shrunk to reduce the overlap-
ping conflict. The possible candidates are evaluated and sorted with respect to the amount
of shrinkage on each side. The lowest shrinkage is applied first. If the conflict is not reduced
by the selected side shrinking, the next side is shrunk until the conflict (with one or more
higher-priority bounding boxes) is reduced, as shown in Figure 4c.

5. Results

The original numeric loss computed from the softmax layer and returned by the trainer
is not a measure of the discrete prediction accuracy, i.e., the number of correct and incorrect
predicted segment classes, which were achieved after binarisation and the maximum best-
of selection. This is an indicator of a low separation margin in the target feature space.
There was no significant difference in the accuracy, recall, and precision in the training and
test dataset, shown in Table 1. Examples of the classified bounding boxes are shown in
Figure 5. Because only the C class (coverage of construction surfaces) is of high relevance
(the highest priority), only the particular classification percentages for this class are shown
in the last column in Table 1. The average prediction error for all classes was about 10%,
with low variance across the different models trained with different sub-sets from the entire
dataset, each with different random initialisation. The average errors for specific classes
differed significantly. The relevant class C shows a prediction error (¬ C) of about 20%,
with respect to the samples, and a high variance across different models. Splitting the
prediction accuracy among the tuple true positive (C), false positive (¬ C), true negative
(¬ C), and false negative (C) groups, the average TP prediction accuracy was about 80%.

Table 1. Accumulated prediction results for the training and test data and the entire dataset combined,
with statistical features of the model ensemble trained in parallel (using different data sub-sets and
random initialisation). All errors have a 2σ standard deviation interval, and N = 9000 samples,
n = 3000 for each class, using CNN architecture A.

Dataset Total Error (¬TPC) % Error (¬TPC)/Class % Prediction Accuracy/Class C (TP, FP, TN, FN) %

Training 10.6 ± 1.5 5.0 ± 3.4, 6.0 ± 2.8, 21.0 ± 7.1 79.0 ± 7, 4.8 ± 2, 94.7 ± 6.6, 10.5 ± 3.1
Test 11.1 ± 1.8 5.8 ± 2.6, 5.8 ± 3.2, 22.0 ± 8.3 78.0 ± 4.3, 5.1 ± 2.2, 95.1 ± 2.1, 11.0 ± 4.4
All 10.9 ± 1.6 4.2 ± 2.8, 5.9 ± 3.4, 21.7 ± 8 78.4 ± 8, 5.0±2.2, 95.0 ± 2.2, 10.8 ± 4

Eng. Proc. 2022, 27, 82 9 of 13

Considering the bounding box estimator post-processing, the FP rate of the priority
class C was nearly zero. The average coverage of the predicted and estimated C area was
about 50%, showing an underestimation. The TP rate of class C regions was about 70%.

Typical forward and backward times for the CNN are shown in Table 2. Finally, the
different CNN architectures were compared with respect to classification accuracy in Ta-
ble 3. There was no significant degradation of the classification accuracy observed.

In addition to a three-class predictor, a four-class predictor was evaluated, too. An
arbitrary unknown class U was added to the class set (i.e., a void class covering “all other”
cases). There were no significant improvements in the prediction accuracy of the classes
B/P/C observed. A confusion matrix plot of an image segment classification example is
shown in Figure 6. Reducing the image segment size by a factor of 2 increased the classi-
fication errors significantly, suggesting the 64 × 64 segment size as the lower limit.

Figure 5. Classified bounding boxes for one image using four models trained in parallel (same pa-
rameters) but with different random initialisation and training data sub-sets (Blue: class back-
ground, red: class coverage, green: class-free construction surface).

Table 1. Accumulated prediction results for the training and test data and the entire dataset com-
bined, with statistical features of the model ensemble trained in parallel (using different data sub-
sets and random initialisation). All errors have a 2σ standard deviation interval, and N = 9000 sam-
ples, n = 3000 for each class, using CNN architecture A.

Dataset Total Error (¬TPC) % Error (¬TPC)/Class % Prediction Accuracy/Class C (TP, FP, TN, FN) %

Training 10.6 ± 1.5 5.0 ± 3.4, 6.0 ± 2.8, 21.0 ± 7.1 79.0 ± 7, 4.8 ± 2, 94.7 ± 6.6, 10.5 ± 3.1

Test 11.1 ± 1.8 5.8 ± 2.6, 5.8 ± 3.2, 22.0 ± 8.3 78.0 ± 4.3, 5.1 ± 2.2, 95.1 ± 2.1, 11.0 ± 4.4

All 10.9 ± 1.6 4.2 ± 2.8, 5.9 ± 3.4, 21.7 ± 8 78.4 ± 8, 5.0±2.2, 95.0 ± 2.2, 10.8 ± 4

Table 2. Forward and backward (training) times for one 64 × 64 × 3 segment and different CNN
architectures (see Figure 3) using the JavaScript ConvNet.js classifier 1 and TensorFlow (CPU) 2.

CNN Architecture Parameters Forward Time Backward Time

A (8/16) 122,587 18 ms 1, 0.5 ms 2 26 ms 1, 1 ms 2

B (4/8) 66,639 8 ms 1 10 ms 1

C (8/8) 104,603 12 ms 1 18 ms 1

D (4/4) 58,047 6 ms 1 8 ms 1

Table 3. Statistical measures of the different CNN model architectures.

Figure 5. Classified bounding boxes for one image using four models trained in parallel (same pa-
rameters) but with different random initialisation and training data sub-sets (Blue: class background,
red: class coverage, green: class-free construction surface).

Eng. Proc. 2022, 27, 82 9 of 12

We obtained the following average statistical measures for the class prediction of the
single-image segments:

Accuracy = TP+TN
TP+FP+FN+TN =


0.92 train
0.91 test
0.92 all

Precision = TP
TP+FP =


0.94 train
0.94 test
0.94 all

Recall = TP
TP+FN =


0.88 train
0.88 test
0.88 all

Specificity = TN
TN+FP =


0.95 train
0.95 test
0.95 all

f1 = 2 · Recall·Precision
Recall+Precision =


0.9 test
0.9 train
0.9 all

(3)

The prediction results for the training and test data do not differ significantly and
show similar high statistical measures, which is an indicator of a representative training
data sub-set and a sufficiently generalised predictor model.

Considering the bounding box estimator post-processing, the FP rate of the priority
class C was nearly zero. The average coverage of the predicted and estimated C area was
about 50%, showing an underestimation. The TP rate of class C regions was about 70%.

Typical forward and backward times for the CNN are shown in Table 2. Finally, the
different CNN architectures were compared with respect to classification accuracy in Table 3.
There was no significant degradation of the classification accuracy observed.

Table 2. Forward and backward (training) times for one 64 × 64 × 3 segment and different CNN
architectures (see Figure 3) using the JavaScript ConvNet.js classifier 1 and TensorFlow (CPU) 2.

CNN Architecture Parameters Forward Time Backward Time

A (8/16) 122,587 18 ms 1, 0.5 ms 2 26 ms 1, 1 ms 2

B (4/8) 66,639 8 ms 1 10 ms 1

C (8/8) 104,603 12 ms 1 18 ms 1

D (4/4) 58,047 6 ms 1 8 ms 1

Table 3. Statistical measures of the different CNN model architectures.

CNN Total Error
% Accu Prec Recall Spec f1

A (8/16) 11.8 0.909 0.935 0.866 0.947 0.899
B (4/8) 11.8 0.909 0.935 0.866 0.947 0.899
C (8/8) 11.7 0.909 0.936 0.864 0.948 0.899
D (4/4) 12.7 0.900 0.924 0.856 0.938 0.889

In addition to a three-class predictor, a four-class predictor was evaluated, too. An
arbitrary unknown class U was added to the class set (i.e., a void class covering “all other”
cases). There were no significant improvements in the prediction accuracy of the classes
B/P/C observed. A confusion matrix plot of an image segment classification example
is shown in Figure 6. Reducing the image segment size by a factor of 2 increased the
classification errors significantly, suggesting the 64 × 64 segment size as the lower limit.

Eng. Proc. 2022, 27, 82 10 of 12

Eng. Proc. 2022, 27, 82 10 of 13

CNN Total Error % Accu Prec Recall Spec f1

A (8/16) 11.8 0.909 0.935 0.866 0.947 0.899

B (4/8) 11.8 0.909 0.935 0.866 0.947 0.899

C (8/8) 11.7 0.909 0.936 0.864 0.948 0.899

D (4/4) 12.7 0.900 0.924 0.856 0.938 0.889

Figure 6. Example results (from TensorFlow model) of a four-class predictor with an additional
“unknown” class U. (a) 64 × 64 pixel segment size; (b) 32 × 32 pixel segment size.

The increase in accuracy after some image pre-processing techniques (Gaussian blur,
rotation) was small and around 1–2%. One major question was the explainability of the
CNN classifier and which features of the input image segments were amplified. A first
guess was the colour information contained in the image segments. For example, the back-
ground was mostly blue or black, and the coverage was mostly white or grey. Therefore,
a simple RGB-pixel classifier was applied to each image pixel using a simple fully con-
nected ANN, finally applying the same post-processing algorithms. The results show an
average true-positive classification accuracy of about 60%, which is above the guess like-
lihood (33%), and therefore, the colour feature was still strongly correlated to the classifi-
cation target label.

Comparing both software frameworks (optimised native code versus virtual ma-
chine processing with JavaScript), the overall classification results are similar, and the
overall segment classification accuracy was about 90%. The computational time of Con-
vNet.js was about 50 times higher than that of the CPU-based TensorFlow software. Be-
cause the CNN’s complexity was low (fewer than 100,000 parameters distributed over six
layers), the data-path parallelisation using single-instruction multiple-data architectures
and GGPU co-processors posed no significant speed-up. Control-path parallelisation can
be utilised during the training of the model ensemble (maximal speed-up M with M mod-
els), and during inference (the maximal speed-up is S, where S is the number of segments
per image).

There are different choices for accelerated co-processors, but some of them are lim-
ited to TensorFlow only (proprietary interface). The Intel Neural Stick and the Google
Coral accelerator are USB dongles with a special TPU chip to perform all tensor calcula-
tions. Google Coral works with special pre-compiled TensorFlow Lite networks. The Jet-
son Nano is the only single-board computer with floating-point GPU acceleration. It sup-
ports most models because all frameworks, including TensorFlow, Caffe, PyTorch, YOLO,
MXNet, and others, use the CUDA GPU support library at some point. The Raspberry Pi
computer can be used with some computational accelerators, such as the Intel Neural
Stick2 and the Google Coral USB accelerator. The Google Coral development board has a
tensor processing unit (TPU). Jetson Nano has a GPU on board. TensorFlow Lite is

Figure 6. Example results (from TensorFlow model) of a four-class predictor with an additional
“unknown” class U. (a) 64 × 64 pixel segment size; (b) 32 × 32 pixel segment size.

The increase in accuracy after some image pre-processing techniques (Gaussian blur,
rotation) was small and around 1–2%. One major question was the explainability of the
CNN classifier and which features of the input image segments were amplified. A first guess
was the colour information contained in the image segments. For example, the background
was mostly blue or black, and the coverage was mostly white or grey. Therefore, a simple
RGB-pixel classifier was applied to each image pixel using a simple fully connected ANN,
finally applying the same post-processing algorithms. The results show an average true-
positive classification accuracy of about 60%, which is above the guess likelihood (33%), and
therefore, the colour feature was still strongly correlated to the classification target label.

Comparing both software frameworks (optimised native code versus virtual machine
processing with JavaScript), the overall classification results are similar, and the overall
segment classification accuracy was about 90%. The computational time of ConvNet.js
was about 50 times higher than that of the CPU-based TensorFlow software. Because the
CNN’s complexity was low (fewer than 100,000 parameters distributed over six layers), the
data-path parallelisation using single-instruction multiple-data architectures and GGPU
co-processors posed no significant speed-up. Control-path parallelisation can be utilised
during the training of the model ensemble (maximal speed-up M with M models), and
during inference (the maximal speed-up is S, where S is the number of segments per image).

There are different choices for accelerated co-processors, but some of them are limited
to TensorFlow only (proprietary interface). The Intel Neural Stick and the Google Coral
accelerator are USB dongles with a special TPU chip to perform all tensor calculations.
Google Coral works with special pre-compiled TensorFlow Lite networks. The Jetson Nano
is the only single-board computer with floating-point GPU acceleration. It supports most
models because all frameworks, including TensorFlow, Caffe, PyTorch, YOLO, MXNet, and
others, use the CUDA GPU support library at some point. The Raspberry Pi computer
can be used with some computational accelerators, such as the Intel Neural Stick2 and the
Google Coral USB accelerator. The Google Coral development board has a tensor processing
unit (TPU). Jetson Nano has a GPU on board. TensorFlow Lite is compatible with all devices.
Originally developed to work in smartphones and other small devices, TensorFlow Lite
would never encounter a CUDA GPU. Hence, it does not support CUDA or cuDNN. Thus,
the use of TensorFlow Lite on a Jetson Nano is purely based on CPU, not GPU. The Jetson
Nano can run TensorFlow models with a GPU on board. However, NVIDIA (Jetson is
from NVIDIA) provides TF-TRT on the Jetson Nano. TensorFlow–TensorRT (TF-TRT) is an
integration of TensorFlow and TensorRT that leverages inference optimisation on NVIDIA
GPUs within the TensorFlow ecosystem.

Table 4 shows a summary of TensorFlow’s performance using widely used image
classification networks processed on different hardware devices using accelerators (based
on [7]).

Eng. Proc. 2022, 27, 82 11 of 12

Table 4. TensorFlow performance using widely used image classification networks processed on
different hardware in image frames per second (FPS) [7].

Model (Input Size) Raspberry Pi-3/4
(TF-Lite)

Raspberry Pi-3/4
Intel Neural Stick 2

Raspberry Pi-3/4
Google Coral USB Jetson Nano Google

Coral

EfficientNet-B0 (224 × 224) 14.6–25.8 FPS 95–180 FPS 105–200 FPS 216 FPS 200 FPS
ResNet-50 (244 × 244) 2.4–4.3 FPS 16–60 FPS 10–18.8 FPS 36 FPS 18.8 FPS
MobileNet-v2 (300 × 300) 8.5–15.3 FPS 30 FPS(Pi-3) 46 FPS(Pi-3) 64 FPS 130 FPS
SSD Mobilenet-V2 (300 × 300) 7.3–13 FPS 11–41 FPS 17–55 FPS 39 FPS 48 FPS

6. Conclusions

Although the overall classification accuracy was about 90%, the high variance of the
segment prediction results across the differently trained models (with the models all having
the same architecture) limited the output quality of the labelled ROI detector, typically
resulting in an underestimation of the classified regions and a lack of generalisation.
However, the presented static segment prediction with point clustering and iterative
selective bounding box approximation with final overlapping conflict reduction was still
reliable. Similar to random forest trees, a multi-model prediction with model fusion (e.g.,
major coverage estimation) is proposed to obtain the best matching bonding boxes for the
relevant classes.

The reduction of the CNN complexity with respect to the number of filters and
dynamic parameters did not lower the classification accuracy significantly. Although
CNNs are less suitable for low-resource embedded systems, CNN architecture D (4/4)
could be implemented in embedded camera systems, expecting overall ROI extraction
times of about 5 s for one image frame, which is not suitable for real-time operation
(maximal latency 100 ms). By using control-path parallelisation to perform the image
segment classifications in parallel, the ROI extraction could be reduced to 1 s using generic
multi-core CPUs, or 100 ms using FPGA-based co-processors.

Author Contributions: All authors contributed equally to this article. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was founded by the Bremer Aufbau-Bank GmbH, Förderkennzeichen FUE0648B,
for the project “Maritime KI unterstützte Bildauswertung” (MaritimKIB).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Layer structures and parameter counts of four different CNN architectures used in this
work (s: stride, vecOps: unit vector operations; input layer has an output size of 32 × 32 × 3).

Arch. Layer Filter Activation Output Parameter VecOps

A (16/16)

Conv [5 × 5] × 8, s = 1 - 64 × 64 × 608 4915200
Relu - relu 64 × 64 × 8 32768 32768
Pool [2 × 2] × 8, s = 2 - 32 × 32 × 8 0 8192
Conv [5 × 5] × 16, s = 1 - 32 × 32 × 16 3216 6553600
Relu - relu 32 × 32 × 16 16384 16384
Pool [3 × 3] × 16, s = 3 - 10 × 10 × 16 0 1600
Fc - relu 1 × 1 × 3 4803 9600
SoftMax - - 3 3 3

Σ57,782 Σ11,537,347

Eng. Proc. 2022, 27, 82 12 of 12

Table A1. Cont.

Arch. Layer Filter Activation Output Parameter VecOps

B (8/8)

Conv [5 × 5] × 4, s = 1 - 64 × 64 × 4 304 2457600
Relu - relu 64 × 64 × 4 16384 16384
Pool [2 × 2] × 4, s = 2 - 32 × 32 × 4 0 4096
Conv [5 × 5] × 8, s = 1 - 32 × 32 × 8 808 1628400
Relu - relu 32 × 32 × 8 8192 8192
Pool [3 × 3] × 8, s = 3 - 10 × 10 × 8 0 800
Fc - relu 1 × 1 × 3 2403 4800
SoftMax - - 3 3 3

Σ28,094 Σ4,127,878

C (8/16)

Conv [5 × 5] × 8, s = 1 - 64 × 64 × 8 608 4915200
Relu - relu 64 × 64 × 8 32768 32768
Pool [2 × 2] × 8, s = 2 - 32 × 32 × 8 0 8192
Conv [5 × 5] × 16, s = 1 - 32 × 32 × 8 1608 3276800
Relu - relu 32 × 32 × 8 8192 8192
Pool [3 × 3] × 16, s = 3 - 10 × 10 × 8 0 800
Fc - relu 1 × 1 × 3 2403 4800
SoftMax - - 3 3 3

Σ45,582 Σ8,246,755

D (4/4)

Conv [5 × 5] × 4, s = 1 - 64 × 64 × 4 304 2457600
Relu - relu 64 × 64 × 4 16384 16384
Pool [2 × 2] × 4, s = 2 - 32 × 32 × 4 0 4096
Conv [5 × 5] × 4, s = 1 - 32 × 32 × 4 404 819200
Relu - relu 32 × 32 × 4 4096 4096
Pool [3 × 3] × 4, s = 3 - 10 × 10 × 4 0 400
Fc - relu 1 × 1 × 3 1203 2400
SoftMax - - 3 3 3

Σ22,394 Σ3,304,179

References
1. Li, C.; Anwar, S.; Hou, S.J.; Cong, R.; Guo, C.; Ren, W. Underwater image enhancement via medium transmission-guided

multi-color space embedding. IEEE Trans. Image Processing 2021, 30, 4985–5000. [CrossRef] [PubMed]
2. Akkaynak, D.; Treibitz, T. Sea-thru: A method for removing water from underwater images. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1682–1691.
3. Mittal, S.; Srivastava, S.; Jayanth, J.P. A Survey of Deep Learning Techniques for Underwater Image Classification. IEEE Trans.

Neural Netw. Learn. Syst. 2022, 1–15. [CrossRef]
4. Xu, Y.; Zhang, H.; Wang, H.; Liu, X. Underwater image classification using deep convolutional neural networks and data

augmentation. In Proceedings of the 2017 IEEE International Conference on Signal Processing, Communications and Computing
(ICSPCC), Xiamen, China, 22–25 October 2017; pp. 1–5. [CrossRef]

5. Deep, B.V.; Dash, R. Underwater fish species recognition using deep learning techniques. In Proceedings of the 2019 6th
International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; pp. 665–669.

6. Bosse, S. PSciLab: An Unified Distributed and Parallel Software Framework for Data Analysis, Simulation and Machine
Learning—Design Practice, Software Architecture, and User Experience. Appl. Sci. 2022, 12, 2887. [CrossRef]

7. Available online: https://qengineering.eu/deep-learning-with-raspberry-pi-and-alternatives.html (accessed on 1 July 2022).

http://doi.org/10.1109/TIP.2021.3076367
http://www.ncbi.nlm.nih.gov/pubmed/33961554
http://doi.org/10.13140/RG.2.2.25098.59846
http://doi.org/10.1109/ICSPCC.2017.8242527
http://doi.org/10.3390/app12062887
https://qengineering.eu/deep-learning-with-raspberry-pi-and-alternatives.html

	Introduction
	Related Work
	Image Sets
	Methods and Architecture
	Image Segmentation
	Convolutional Neural Network Architecture
	Image ROI Classification
	Training and Labelling
	Mean Bounding Box Algorithm

	Results
	Conclusions
	Appendix A
	References

