
Citation: Dore, H.; Aviles-Espinosa,

R.; Rendon-Morales, E. FPGA

Implementation of ECG Signal

Processing for Use in a Neonatal

Heart Rate Monitoring System. Eng.

Proc. 2022, 27, 70. https://doi.org/

10.3390/ecsa-9-13258

Academic Editor: Francisco Falcone

Published: 1 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

FPGA Implementation of ECG Signal Processing for Use in a
Neonatal Heart Rate Monitoring System †

Henry Dore , Rodrigo Aviles-Espinosa and Elizabeth Rendon-Morales *

Robotics and Mechatronics Systems Research Group, School of Engineering and Informatics, University of Sussex,
Falmer BN1 9RH, UK
* Correspondence: er241@sussex.ac.uk
† Presented at the 9th International Electronic Conference on Sensors and Applications, 1–15 November 2022;

Available online: https://ecsa-9.sciforum.net.

Abstract: A field-programmable gate array (FPGA) based system for digital filtering in a neonatal
heart rate monitoring system is presented. The system employs electric potential sensors (EPS)
and contains a single hardware filter stage for antialiasing. The remaining digital signal processing
required to provide a clinical standard electrocardiogram (ECG) is performed on the FPGA (myRIO
1900, National Instruments Corporation of Austin, Austin, TX, USA). This is compared with a
previous microprocessor version (Raspberry Pi 3, BCM2837 processor, Raspberry Pi Ltd, Cambridge,
UK) containing a dual hardware/software filtering scheme, with the aim of simplifying the analog
front end and allowing for reconfigurable filtering in the digital domain. A custom neonate phantom
was employed to emulate real world conditions and ambient noise. The developed FPGA system
was shown to have a signal quality comparable with the microprocessor implementation, with an
average signal-to-noise ratio loss of 2%. A 12 dB increase in the attenuation of the predominant
50 Hz noise was shown, indicating filter effectiveness gains. The phantom was used to broadcast
data from the preterm infant cardio-respiratory signals database (PICSDB) and the FPGA filtering
scheme was shown to remove the majority of the ambient 50 Hz noise with an average reduction of
30 dB, and provided a clean ECG signal. These results demonstrate that FPGA-filtered EPS ECGs
have comparable signal quality to the combined HW/SW filtering implementation, with a reduction
in complexity and power consumption.

Keywords: heart rate; FPGA; ECG; newborn; medical devices; DSP; electric potential sensor

1. Introduction

The need for rapid and accurate heart rate (HR) measurement in the delivery room
is well established, as it is the predominant quantitative indicator of a newborn’s health
and is monitored in the delivery room to guide clinical intervention and resuscitation
efforts [1]. Our previous work describes a prototype microprocessor-based neonatal HR
monitor [2] integrating novel electric potential sensors (EPS) into a standard delivery room
neonatal mattress. EPS sensors do not require galvanic contact with the skin; therefore,
high-resolution ECGs can be recorded without the need for a sensor attachment, allowing
for rapid and accurate infant HR calculation. EPS sensors are highly susceptible to ambient
noise however, predominantly 50/60 Hz power line interference. The requirement for high
levels of filtering with EPS devices can be fulfilled by the use of hardware accelerators in
place of traditional digital signal processing.

Field programmable gate-arrays (FPGAs) are reprogrammable logic devices, capable
of parallel process execution and reconfiguration. FPGA based bio-signal filtering has been
successfully applied to the ECG signal for powerline noise reduction [3] with efficiency
savings over traditional digital signal processing (DSP), and FPGA implementations of beat
detection algorithms used to measure heart rates have shown a 98% accuracy and real-time
beat classification [4].
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FPGA system-on-chip (FPSoC) architectures provide dynamic partial reconfiguration
(DPS) for runtime reconfiguration of the FPGA [5] which can replace static analog front-
end elements such as analog hardware filters. This allows for adaptation to changing or
intermittent noise sources.

This work considers the implementation of an FPGA-based digital filtering system for
electrocardiogram reading using EPS sensors. Two platforms were tested: a microprocessor-
based system with both hardware and software filters; and an FPGA-based system with
a single-hardware low-pass filter stage for anti-aliasing, and software filtering. Both
systems were characterised using a custom infant ECG phantom tailored for EPS sensor
experimentation. Evaluation metrics for signal quality were defined including signal
quality, noise rejection, and HR calculation accuracy. The end goal is to investigate whether
the hardware filtering section can be removed and replaced with a purely digital filtering
scheme implemented in FPGA hardware.

2. Materials and Methods

This work compares two neonatal HR monitoring platforms, these being the frontend
for the EPS sensors: a traditional microprocessor-based system and a field-programmable
gate array-based system, hereafter referred to as the µPU and FPGA systems, respectively.
Both systems were connected to a pair of EPS sensors, with a textile reference electrode con-
nected to each system ground. A subtraction is performed by a precision instrumentation
amplifier (AD623, Analog Devices Inc., Wilmington MA, USA) to remove common mode
noise and produce a single signal which is processed by the system front ends. Figure 1
shows a block system diagram of the EPS sensor connections to the frontend and system
architecture elements.
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The µPU system is based on the Raspberry Pi 3 A+ with built-in hardware filtering,
a 12-bit analog-to-digital converter (ADC) sampling at 1 kHz. A C++ DSP filtering runs
on Raspbian Linux using the Broadcom 2837 Cortex-A53 (Raspberry Pi Ltd, Cambridge,
UK). The resulting data were displayed on an integrated 7” touchscreen and graphical
user interface. The FPGA system is based on a National Instruments myRIO 1900 platform
with a front end for signal conditioning and alias filtering. A 12-bit ADC at a sample rate
of 1 kHz matches that of the µPU system. Digital software filters were implemented in
the FPGA portion of the Xilinx Z-7010 chip. Data storage and display is programmed in
National Instruments LabVIEW.

2.1. Filtering

A 50 Hz notch filter to remove the dominant noise from powerline interference and
a 200 Hz low-pass (LP) filter to remove any higher frequencies and harmonics of the
fundamental 50 Hz noise were employed. These standard ECG filter specifications were
chosen to avoid any alteration of the ECG signal [6], and allow the R peak of the ECG to
be extracted accurately, enabling heartbeat interval and therefore HR calculation. Figure 2
shows the frequency response of the hardware and software filter stages.
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Hardware filtering for the µPU system consists of a 2nd-order active twin-T Notch
filter (corner frequency, fc = 50 Hz) and a 2nd-order active low pass filter (fc = 200 Hz)
and the FPGA system contains a single 1st-order active low pass filter (fc = 500 Hz) for
anti-aliasing, as shown in Figure 2a.

Both systems have the same software filters implemented in the FPGA or C++, respec-
tively. To compare different levels of software filtering, 3 predefined filtering settings were
chosen: Low/Medium/High. The level of high frequency (>200 Hz) attenuation for the
LP filters is controlled by varying the filter order, thus creating a steeper roll-off as seen in
Figure 2b. The level of 50 Hz attenuation is varied by varying the stopband frequencies
either side of 50 Hz resulting in a deeper notch (Figure 2c).

2.2. Neonate Phantom

A cardiac phantom was developed to mimic the interference layer of tissue between
signal source and sensor, and to provide a signal ground path with similar conductivity to
human tissue. It consists of a stack of layers modelling the voltage of the neonate heart and
signal propagation through the human tissue, the cotton and foam material of the mattress.

Pharmaceutical-grade agar powder (Intralabs UK) used at 2% concentration (to reflect
the elastic behaviour of skin) was mixed with a saline solution to increase the conductivity.
A total of 1 mg NaCl per 100 mL was selected for an approximate conductivity of ≈ 0.5
Siemens/m to emulate the skin as described in [7]. Agar castings were then placed on top of
an insulating base with a copper ground loop and voltage source emitter for signal generation.

The EPS sensors and ground reference electrodes (CuNi MOS Titan conductive fab-
ric) were attached to a cotton substrate to mimic the top layer of a delivery room mattress.
Electrodes were selected for biocompatibility, low electrical resistance and an impedance com-
parable with traditional ECG electrodes [8] of 100 kΩ at 50 Hz. To reproduce the compression
due to an average birth weight infant (~3.4 kg), a weight of 140 g was placed on top of the
phantom stack to achieve a realistic contact pressure of 260 Pa for the 5 cm × 10 cm stack.

2.3. Signal Analysis

Signal to noise ratio (SNR) was calculated using the signal matching method [9]. A
2 Hz sine wave with amplitudes of Vpp = 25 mV, 50 mV, and 75 mV was transmitted to the
phantom. EPS sensor voltages drop linearly with distance from the source, representing
EPS voltages of 3.3, 6.7, and 10 mV, respectively, comparable to infant ECG voltage levels.
Five 60 s recordings of the test signal were taken with both systems, then an idealised input
sine wave was then generated, and cross-correlated with the recorded signal in MatLab.
This was used to produce a noise estimate by subtracting the idealised sine wave from
the recorded EPS output. The signal-to-noise ratio (SNR) in decibels of the signal is then
derived by computing the ratio of its summed squared magnitude to that of the noise.

The phantom was used to transmit a generated neonate biosignal to the EPS sensors
at an amplitude of 75 mVpp at 1, 2, and 3 Hz corresponding to 60, 120, and 180 bpm.
This serves to examine the frequency components of the received signal, and to examine
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the calculated HR and any system-induced heart rate variability. The Pan Tompkins HR
detection algorithm [10] was applied to validate accurate HR calculation, and the heart rate
variation (HRV) metric rrHRV [11] (computing the difference of consecutive RR intervals
weighted by their mean) was also applied to the signals.

Finally, to test the filtering effectiveness of the proposed FPGA system with real world
signals, the neonate phantom was used to broadcast 60 s samples of waveforms from the
Preterm Infant Cardio-Respiratory Signals Database [12].

Data were recorded and processed in MatLab, and recordings were made simultane-
ously on both devices in a residential setting with no attempt to shield the devices from
ambient interference that may be present.

3. Results

Figure 3 shows the results comparing the SNR of the DSP filtering of the FPGA system
to the combined DSP and hardware filtering of the µPU at a range of signal amplitudes:
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Figure 3. Signal-to-noise ratio for both systems at a range of signal amplitude and DSP filtering levels.

SNR is proportional to the signal amplitude as the predominant 50 Hz noise (external
to the system) is fixed, so increasing signal amplitude increases the SNR. For the High
filtering case (ideal scenario) the FPGA has a 15% reduction in SNR compared to the µPU
system at the 25 mV signal level, but a 3% and 5% increase for the 50 mV and 75 mV signal
levels, respectively. This gives the FPGA system an average SNR loss of 2% compared to the
µPU system, indicating that the signal quality is comparable. The effect of increasing the
level of filtering is modest, and for all the cases across both devices the High filtering level
only generates a maximum 7% increase in SNR compared to the Low level. Comparing
the unfiltered µPU cases, the effect of the hardware filtering stage is clear, accounting an
average increase of 3 dB SNR compared to the unfiltered FPGA system.

Figure 4 shows the power spectral density (PSD) using the Welch estimate method for
a generated neonate biosignal transmitted to the phantom with an amplitude of 75 mVpp
at 120 Hz.
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For both cases, without DSP filtering, the 50 Hz noise peak can be seen clearly, although
it has a lower amplitude for the µPU system given that the signal has already been pre-
filtered using the hardware filtering. The varied levels of DSP filtering provide greater
50 Hz attenuation for the FPGA system at 29.2, 33.8, and 40.4 dB for low/medium/high,
respectively, and just 28 dB for the µPU across all 3 DSP filtered cases. The effect of the
increased DSP filtering levels is clear for all the LP filters, with increasing roll-off visible for
both systems above 200 Hz, closely matching the frequency response analysis in Figure 2b,c.
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The results of the HR validation and HR variation analysis are presented in Table 1, to
quantify the temporal accuracy of both systems.

Table 1. HR and HRV analysis at a range of heart rates.

µPU FPGA

Generated HR [bpm] 60 120 180 60 120 180
Calculated HR, [bpm] 60 120 180 60 120 179

rrHRV, median 0.22 0.62 0.81 0.14 0.28 0.42

In this test, the two systems produced HRs within 1 bpm of the generated signals,
confirming the accuracy of the signal reproduction. The HRV analysis showed increasing
RR interval deviation for increasing bpm due to the fixed 1 kHz sample rate of the devices,
where higher frequency input samples become less temporally accurate due to sample
timing errors in discretisation.

A sample of the results of the PICSDB waveform testing of the FPGA system is shown
in Figure 5:
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Figure 5a shows the original signal, the effect of the addition of ambient 50 Hz noise
in the raw EPS signal, and the filtered EPS signal showing the removal of noise and return
to original waveform morphology. The R peak of the ECG is clearly visible in the filtered
signal, albeit with some reduction in amplitude. Features of the ECG such the baseline
wander just after the 36.5 s mark were preserved in the filtered signal, showing that no
major morphological changes occur in the waveform. In Figure 5b the PSD of PICSDB
record, raw signal, and filtered signal are shown. The susceptibility of EPS sensors to 50 Hz
noise is clear in the peaks at 50 Hz and also 150 Hz harmonic. The FPGA-based filtering
scheme removed an average of 30 dB of 50 Hz noise via the notch filter, and the steep
roll-off of the 200 Hz LP filter removed the higher-order harmonics.

4. Discussion & Conclusions

Signal quality for the proposed FPGA DSP system is broadly equivalent to the µPU
with hardware and software filtering, with an average SNR loss of just 2%. The frequency
response of the FPGA is shown to have up to twice as much 50 Hz noise attenuation
for the highest filtering setting compared with the µPU system. Heart rate variability
measurements using a HR detection algorithm and analysis of detected RR interval changes
show that both systems produce ECGs suitable for the accurate calculation of heart rates
(within 1 bpm of the generated signal).

This work has introduced an FPGA-based DSP filtering system for the monitoring
of newborn ECG signal using electric potential sensors, validating its performance using
a neonate phantom with a high resolution, low amplitude bio-signals, and a human
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tissue phantom. The system is characterised and compared to a previous prototype with
microprocessor-based software DSP. The FPGA system is shown to have the same filtering
capabilities compared to the µPU system, despite the lack of hardware filtering stage, and
consuming up to 90% less energy per sample filtered. The FPGA system recorded ECGs
suitable for the accurate calculation of HR, and with less HR variation than the µPU system.
This work contains strong evidence that sufficient filtering capacity is available purely in
the digital domain by harnessing FPGA technology.
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