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Abstract: With the invention of GPS and related technologies, outdoor positional systems have
become very accurate. However, there is still a need for efficient, reliable, and less expensive
technology for indoor navigation. There are lots of techniques used for indoor navigation, such
as acoustic, Wi-Fi-based, proximity-based, infrared systems and SLAM algorithms. In this study,
accurate position estimation was attempted by combining the acceleration and gyroscope data and the
raw distance data with the help of the Extended Kalman Filter (EKF). Initially, a position estimation
was obtained using the Recursive Least Square (RLS) method with a trilateration algorithm. This
solution was used as a starting point for RLS. Here, the first solution point is updated as the initial
solution for each distance, and the result calculated by the RLS method is updated as the next
solution. This approach enables the distance measurement and position estimation to be executed
simultaneously, avoids the unnecessary waiting time, and speeds up the positioning estimation. After
that, this position estimation is fused with the acceleration and gyroscope data. In order to test the
designed algorithm, synthetic data were used. As a result of these tests, it has been observed that this
EKF structure created for indoor navigation gives accurate results.

Keywords: indoor navigation; Extended Kalman Filter; sensor fusion

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have been widely used in military, in-
dustry, agriculture, and other areas, such as aerial photography and air reconnaissance [1–3].
All these specified areas are outdoors, so the UAVs usually receive the GPS signals properly.
If there is no GPS signal or a weak GPS signal, however, positioning accuracy is directly af-
fected. Nowadays, there is a great demand for UAV inspection based on indoor technology,
and this demand is related to control optimization and path tracking.

There are a lot of techniques for indoor positioning, such as vision-based, lidar-based,
Wi-Fi-based, Bluetooth-based, UWB-based and IMU-based techniques [4–6]. A motion-
capturing system, which uses multiple high-speed cameras to obtain the relative position
of the object, has the disadvantage of complex layout and difficult calibration. VICON
and OptiTrack are examples of this system. Since positioning accuracy can now reach
millimeter level, the disadvantages of the system have prompted the emergence of some
simultaneous localization and mapping schemes, such as Oriented FAST and Rotated
BRIEF SLAM (ORB-SLAM) [7], semi-direct visual odometry (SVO) [8] and direct sparse
odometry (DSO) [9]; these schemes use a single monocular camera or a binocular camera
placed on the UAV body to obtain the relative position of the UAV in the environment.
In addition, Gmapping [10], Hector [11] and Cartographer [12] are examples of lidar-
based positioning techniques. Due to the weight of the lidar, which is generally a single
line applied to the UAV, only a two-dimensional position can be obtained. Using Wi-Fi
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for indoor positioning is well-established, and its accuracy can reach a few meters [13].
However, its requirements—in terms of the number of Wi-Fi access points associated
with the costs and power consumption—make this solution impossible without consistent
retrofitting. Bluetooth Low Energy (BLE) and Wi-Fi use the same frequency, but BLE is
designed as a short-range, energy-efficient communication protocol, which allows devices
to communicate through short messages [14]. BLE-based localization is typically performed
by installing a set of proximity beacons at known locations. Receivers transmit the RSSI
(distance from the sender) from the nearest beacons and calculate their own position using
these values [15]. There are two categories for the BLE-based localization algorithm—
distance-based and fingerprinting-based [16]. Distance-based algorithms directly translate
RSSI values into the position coordinates. These methods require at least three RSSI
measurements to estimate the position [17]. On the other hand, fingerprinting-based
algorithms exploit a vector of RSSI measurements at known fingerprint positions to create
a so-called reference fingerprint map (RFM). A machine learning regressor is then fed
with the RFM data to create a relationship rule between new RSSI measurements and
their corresponding position estimates [18]. UWB positioning is light in weight, simple
in layout and stable in positioning, and the accuracy can reach to centimeter level [19,20].
Using only UWB cannot meet the requirements of an indoor high-precision operation. IMU
is a common sensor for orientation estimation. IMU, however, estimates its position by
integration, which accumulates errors due to drift.

In this paper, an accurate position estimation is calculated by combining the IMU and
the raw distance data with the help of the Extended Kalman Filter (EKF). Initially, a position
estimation is obtained using the Recursive Least Square (RLS) method with a trilateration
algorithm. This solution is used as a starting point for RLS. This position estimation is then
fused with acceleration and gyroscope data. These algorithm simulations are performed
in a MATLAB environment. The average results show that the proposed algorithm gives
accurate results within less than ten cm precision.

2. Position Estimation Algorithm
2.1. Geometric Approach

A geometric approach has been put forward in the basis of the study. As shown in the
Figure 1 below, three reference points are given—B1(x1, y1, z1), B2(x2, y2, z2) and B3(x3, y3,
z3)—and d1, d2 and d3 interval measurements up to point A are given. The determination
of the coordinates of point A is carried out by solving the system of quadratic equations.

(x− x1)
2 + (y− y1)

2 + (z− z1)
2 = d1

2

(x− x2)
2 + (y− y2)

2 + (z− z2)
2 = d2

2

(x− x3)
2 + (y− y3)

2 + (z− z3)
2 = d3

2
(1)

Eng. Proc. 2022, 27, 16 2 of 9 
 

 

for indoor positioning is well-established, and its accuracy can reach a few meters [13]. 
However, its requirements—in terms of the number of Wi-Fi access points associated with 
the costs and power consumption—make this solution impossible without consistent ret-
rofitting. Bluetooth Low Energy (BLE) and Wi-Fi use the same frequency, but BLE is de-
signed as a short-range, energy-efficient communication protocol, which allows devices 
to communicate through short messages [14]. BLE-based localization is typically per-
formed by installing a set of proximity beacons at known locations. Receivers transmit the 
RSSI (distance from the sender) from the nearest beacons and calculate their own position 
using these values [15]. There are two categories for the BLE-based localization algo-
rithm—distance-based and fingerprinting-based [16]. Distance-based algorithms directly 
translate RSSI values into the position coordinates. These methods require at least three 
RSSI measurements to estimate the position [17]. On the other hand, fingerprinting-based 
algorithms exploit a vector of RSSI measurements at known fingerprint positions to create 
a so-called reference fingerprint map (RFM). A machine learning regressor is then fed with 
the RFM data to create a relationship rule between new RSSI measurements and their 
corresponding position estimates [18]. UWB positioning is light in weight, simple in lay-
out and stable in positioning, and the accuracy can reach to centimeter level [19,20]. Using 
only UWB cannot meet the requirements of an indoor high-precision operation. IMU is a 
common sensor for orientation estimation. IMU, however, estimates its position by inte-
gration, which accumulates errors due to drift. 

In this paper, an accurate position estimation is calculated by combining the IMU and 
the raw distance data with the help of the Extended Kalman Filter (EKF). Initially, a posi-
tion estimation is obtained using the Recursive Least Square (RLS) method with a trilat-
eration algorithm. This solution is used as a starting point for RLS. This position estima-
tion is then fused with acceleration and gyroscope data. These algorithm simulations are 
performed in a MATLAB environment. The average results show that the proposed algo-
rithm gives accurate results within less than ten cm precision. 

2. Position Estimation Algorithm 
2.1. Geometric Approach 

A geometric approach has been put forward in the basis of the study. As shown in 
the Figure 1 below, three reference points are given—B1(x1, y1, z1), B2(x2, y2, z2) and B3(x3, 
y3, z3)—and d1, d2 and d3 interval measurements up to point A are given. The determination 
of the coordinates of point A is carried out by solving the system of quadratic equations. (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) = 𝑑  (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) = 𝑑  (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) = 𝑑  

(1)

 
Figure 1. Reference Points and Interval Measurements. 

The system of equations given here can expressed as follows: 

Figure 1. Reference Points and Interval Measurements.



Eng. Proc. 2022, 27, 16 3 of 10

The system of equations given here can expressed as follows:(
x2 + y2 + z2)− 2x1x− 2y1y− 2z1z = d1

2 − x2
1 − y2

1 − z2
1(

x2 + y2 + z2)− 2x2x− 2y2y− 2z2z = d2
2 − x2

2 − y2
2 − z2

2(
x2 + y2 + z2)− 2x3x− 2y3y− 2z3z = d3

2 − x2
3 − y2

3 − z2
3

(2)

In addition to that, this expression can be shown in matrix form as below.

1
1
1

−2x1
−2x2
−2x3

−2y1
−2y2
−2y3

−2z1
−2z2
−2z3




x2 + y2 + z2

x
y
z

 =

s2
1 − x2

1 − y2
1 − z2

1
s2

2 − x2
2 − y2

2 − z2
2

s2
3 − x2

3 − y2
3 − z2

3

 (3)

This matrix form generally can be expressed as follows.

A0.x = b0 x ∈ E
E =

{
(x0, x1, x2, x3)

Tε x0 = x2
1 + x2

2 + x2
3

} (4)

While looking at the solution set of this system, it can be seen that there are two
different approaches. The first approach is that points B1, B2 and B3 are not on the same
straight line, and the second approach is that the points are on the same straight line.

Case 1. B1, B2 and B3 are not in a straight line
In this case, the following propositions are true. Rank(A0) = 3, and dim(Kern(A0)) = 1.

Then the general solution of (4) can be shown as:

x = xp + t.xh (5)

where t is a real coefficient, it is seen that xp is the special solution of (4) and it is also the
solution of the system A0. x = 0, which is a homogeneous system at xh. The vectors xp and
xh can be calculated using the Gaussian elimination method.

xp =
(

xp0,xp1,xp2,xp3
)T , xh = (xh0,xh1,xh2,xh3)

T , x = (x0,x1,x2,x3)
T (6)

xp, xh and x are expressed as above. If we substitute these expressions in (6), we can obtain
the expressions given below:

x0 = xp0 + txh0, x1 = xp1 + txh1 , x2 = xp2 + txh2 , x3 = xp3 + txh3 (7)

By using the constraint x ∈ E,

xp0 + txh0 =
(

xp1 + txh1
)2

+
(
xp2 + txh2

)2
+
(
xp3 + txh3

)2 (8)

t2(x2
h1 + x2

h2 + x2
h3

)
+ t
(
2xp1xh1 + 2xp2xh + 2xp3xh3 − xh0

)
+

x2
p1 + x2

p2 + x2
p3 − xp0 = 0 (9)

This is a quadratic equation in the form at2 + bt + c = 0 with the solutions.

t1/2 =
−b±

√
b2 − 4ac

2a
(10)

The solutions of the equation system can be shown below.

x1 = xp + t1xh , x2 = xp + t2xh (11)
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Case 2. B1, B2 and B3 are in a straight line
Then the following propositions are true. Rank(A0) = 2, and dim(Kern(A0)) = 2. Then

the general solution of (4) can be shown as:

x = xp + t.xh1 + k.xh2 (12)

With real parameters t and k; xp is a particular solution of (4), and xh1 and xh2 are two
solutions of the homogeneous system A0. x = 0. They are linearly independent solutions
and, therefore, form a basis of Kern(A0). If there are more than three reference points, the
general solution can be found using the least square method as follows.

x̂ =
(

AT A
)−1

ATb (13)

The projection of p on the column space of A is

p = A
(

AT A
)−1

ATb (14)

In this case, the coordinates of p in the Col (A) column space represent the x̂ solution.
Although, if the measurements are uncorrelated but have different uncertainties, Weighted
Least Squares (WLS) is used. In this case, the solution of x̂ is found with the help of the
following expression:

x̂ =
(

ATV−1 A
)−1

ATV−1b (15)

This solution is used as a starting point for the Recursive Least Square (RLS). Let x0 be
the initial solution, and by every incoming distance, x0 is updated in x1 by using the RLS.
The approach enables distance measurement and positioning calculation to be executed
simultaneously. Hence, a position assignment can be initiated although not all distances are
known. This avoids the unnecessary waiting time and speeds up the positioning calculation.
More detail for this approach is discussed in [21]. Distance data is used together with
the RLS algorithm to help in calculating the position. In the next section, the details of a
more accurate position estimation with the help of EKF will be explained. A sensor fusion
algorithm is used with accelerometer, gyroscope and distance data, and the position is
calculated.

2.2. Sensor Fusion Algorithm

There are lots of sensor fusion algorithms, such as Feature Aggregation, Temporal
Fusion, Support Vector Machine, Kalman Filter, etc. Although, in this system, Kalman
Filter was selected for use to perform a more accurate position estimation. Kalman Filter
gives good results in linear systems, but since there are very few linear systems in the real
world, the Extended Kalman Filter (EKF) is used, which gives better results in non-linear
systems. The EKF solves this problem by calculating the Jacobian of F and H around the
estimated states, which in turn, yields a trajectory of the model function around the stated.
The details of the EKF that are utilized in this work are presented. The nonlinear process
model and noise used in EKF are as given:

x(k + 1) = f (x(k), u(k)) + w(k) (16)

In this equation, x(k) and x(k + 1) represents the states of the system at k and k + 1,
respectively. In addition, u(k) and w(k) represent the control signal and the process noise
(in Gaussian distribution), respectively. The process is expressed by f (.). The measure-
ment model, which relates the state variables to the measurements, is expressed with the
following equation:

z(k) = h(x(k)) + v(k) (17)
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In this equation, h(.), v(k) and z(k) represent nonlinear measurement function, mea-
surement noise (in Gaussian distribution) and measurements, respectively. In EKF, the
filter gain is calculated in the same way as in the linear Kalman Filter. For this reason, the
nonlinear process and measurement models are linearized around the current system states.
This linearization is performed using the first terms of the Taylor series expansion of the
function of interest.

x(k + 1) ≈ x̃(k + 1) + F(x(k)− x̃(k)) + Γw(k) (18)

The mean value of the noise is zero. (w = 0)

x̃(k + 1) ≈ f (x(k), 0) (19)

The F matrix is the Jacobian matrix of the process function ( f ), according to the states
(x). The Γ matrix is the Jacobian matrix of the process function with respect to the noise (w).

Fi,j =
∂ fi
∂xj

∣∣∣∣∣
(x̂(k+1),0)

, Γi,j =
∂ fi
∂wi

∣∣∣∣
(x̂(k+1),0)

(20)

Similarly, the nonlinear measurement function is linearized around the predicted
states.

z(k + 1) ≈ z̃(k + 1) + H(x(k + 1)− x̂(k + 1)) + Φv(k + 1) (21)

The expected noise value is zero (v = 0):

z̃(k + 1) = h(x̃(k + 1), 0) (22)

The H matrix is the Jacobian matrix (x), according to the system states of the mea-
surement function (h). Likewise, the Φ matrix is the Jacobian matrix with respect to the
measurement noise (v) of the measurement function. The general schematic of the EKF
structure used in the system is given in Figure 2 as follows:
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The state vector of the system is given as:

x =



posx
posy
posz
accx
accy
accz

gyrox
gyroy
gyroz


(23)

The state transition of the system is given as:

A =



1 0 0 dt 0 0 dt2/2 0 0
0 1 0 0 dt 1 0 dt2/2 0
0 0 1 0 0 dt 0 0 dt2/2
0 0 0 1 0 0 dt 0 0
0 0 0 0 1 0 0 dt 0
0 0 0 0 0 1 0 0 dt
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(24)

The measurement vector is given as:

z =



distance
accx
accy
accz

gyrox
gyroy
gyroz


(25)

The measurement noise covariance matrix, R, was determined based on the average
noise levels of measurements. Assuming that the measurements are not correlated with
each other, the diagonal matrix below is chosen. The standard deviation values of the
measurements are calculated, and the measurement noise covariance matrix is decided by
using these values.

R = diag([r1 r2 r3 0 0 0 r7 r8 r9]) (26)

Here, r1 . . . r9 values are the distances of the beacon sensors from each other. The
resulting process noise covariance matrix is as follows:

Q =



0.01 0 0 0 0 0 0 0 0
0 0.01 0 0 0 0 0 0 0
0 0 0.0001 0 0 0 0 0 0
0 0 0 0.25 0 0 0 0 0
0 0 0 0 0.16 0 0 0 0
0 0 0 0 0 0.01 0 0 0
0 0 0 0 0 0 0.25 0 0
0 0 0 0 0 0 0 0.16 0
0 0 0 0 0 0 0 0 0.01


(27)

In the next section, the results obtained by applying the designed algorithm on the
simulation will be explained.
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3. Simulation System and Results

The MATLAB environment was used while creating the simulation system. The data
were produced synthetically in MATLAB, and the algorithm was tested under the generated
data. In addition, three different trajectories were used while generating synthetic data.
These trajectories are shown in Table 1. In Figures 3–5, both the position calculations were
calculated with the trilateration algorithm alone, and the position calculations obtained as a
result of using the IMU data together with the trilateration and EKF algorithms are shown.
The minimum, maximum and average error amounts of the calculated positions are shown
in detail in Table 2. The RMS value was used while generating error amounts. According
to the simplicity and complexity of the determined trajectories, the error amounts obtained
by using only the trilateration algorithm differ. For example, the error amounts of position
estimation and position estimation obtained by using only the trilateration algorithm
between Trajectory 1 and Trajectory 3 differ considerably. However, with the inclusion of
EKF in the calculation of position estimation, it is easily observed that the amount of error
obtained decreases both in the relevant Figures 3–5 and in the values given in Table 2.

Table 1. Trajectories.

Trajectory Name Beacon Number Trajectories

Trajectory 1 5
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Trajectory 3 Trilateration Algorithm + EKF 0.001041 0.083402 0.164720

4. Conclusions

In this study, position estimation was made by combining IMU and raw distance data
with the help of the Extended Kalman Filter (EKF). Simulation of the system is carried on
in the MATLAB environment. The simulation result shows that the proposed method gives
the correct position in centimeter precision levels. First, a geometric solution method was
used in the algorithm; then this method was combined with the EKF algorithm. When the
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results are examined, it is observed that the amount of error is quite high when only the
geometric approach is used. It has been seen that the position estimation has reached the
desired level with the use of EKF as well as the geometric approach. In the future, this
designed algorithm will be tested with the real sensor data. If the obtained results are at
the desired level, the integration of the algorithm into the UAV will be started.

Author Contributions: Conceptualization, T.B. and F.C.; methodology, T.B.; software and data
acquisition T.B.; validation, T.B.; writing—original draft preparation, T.B.; writing—review and
editing, T.B. and F.C.; visualization, T.B.; supervision, F.C.; project administration, F.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was financially supported by Istanbul Technical University, grant num-
ber 42754.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Valavanis, K.P.; Vachtsevanos, G.J. UAV Applications: Introduction; Springer: Amsterdam, The Netherlands, 2015.
2. Samad, T.; Bay, J.S.; Godbole, D. Network-centric systems for military operations in urban Terrain: The role of UAVs. Proc. IEEE

2007, 95, 92–107. [CrossRef]
3. Li, Z.; Liu, Y.; Walker, R.; Hayward, R.; Zhang, J. Towards automatic power line detection for a UAV surveillance system using

pulse coupled neural filter and an improved Hough transform. Mach. Vis. Appl. 2010, 21, 677–686. [CrossRef]
4. Nirjon, S.; Liu, J.; DeJean, G.; Priyantha, B.; Jin, Y.; Hart, T. COIN-GPS: Indoor localization from direct GPS receiving. In

Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services—MobiSys 2014, Bretton
Woods, NH, USA, 16–19 June 2014; pp. 301–314.

5. Vasisht, D.; Kumar, S.; Katabi, D. Decimeter-Level Localization with a Single WiFi Access Point. In Proceedings of the USENINX
Symposium on Networked Systems Design and Implementation, Santa Clara, CA, USA, 16–18 March 2016; pp. 165–178.

6. Zafari, F.; Papapanagiotou, I.; Christidis, K. Microlocation for internet-of-things-equipped smart buildings. IEEE Internet Things J.
2016, 3, 96–112. [CrossRef]

7. Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans.
Robot. 2017, 33, 1255–1262. [CrossRef]

8. Forster, C.; Pizzoli, M.; Scaramuzza, D. SVO: Fast semi-direct monocular visual odometry. In Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 15–22.

9. Engel, J.; Koltun, V.; Cremers, D. Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 611–625. [CrossRef]
[PubMed]

10. Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans.
Robot. 2007, 23, 34–46. [CrossRef]

11. Kohlbrecher, S.; von Stryk, O.; Meyer, J.; Klingauf, U. A flexible and scalable SLAM system with full 3D motion estimation. In
Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japan, 1–5 November
2011; pp. 155–160.

12. Ren, R.; Fu, H.; Wu, M. Large-scale outdoor SLAM based on 2D lidar. Electronics 2019, 8, 613. [CrossRef]
13. Chintalapudi, K.; Padmanabha Iyer, A.; Padmanabhan, V.N. Indoor localization without the pain. In Proceedings of the Annual

International Conference on Mobile Computing and Networking, Mobicom, Chicago, IL, USA, 20–24 September 2010; pp. 173–184.
14. Gomez, C.; Oller, J.; Paradells, J. Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology.

Sensors 2012, 12, 11734–11753. [CrossRef]
15. Wang, Y.; Ye, Q.; Cheng, J.; Wang, L. RSSI-Based Bluetooth Indoor Localization. In Proceedings of the 11th International

Conference on Mobile Ad-Hoc and Sensor Networks, MSN 2015, Shenzhen, China, 16–18 December 2015; pp. 165–171.
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