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Abstract: In the last decades, the application of automatic control techniques in freeform bending
processes was limited to the motion control of the bending die, i.e., the workpiece itself was not
considered inside the closed-loop control system. In a previous work, a simple preliminary model for
the workpiece was used as a foundation for developing a closed-loop system for freeform bending
that includes both the geometry and the mechanical properties of the semi-finished product. However,
this approach did not consider the fact that the same geometry can be reached by either over- or
underbending the tube. In this work, the previously developed system model is extended to include
this physical property of the system.

Keywords: freeform bending; automatic control; over- and underbending of tubes; finite element
method (FEM); modelling; computerized numerically controlled machines (CNC-Machines); G-Code

1. Introduction

In freeform bending, the application of closed-loop control systems (to the author’s
best knowledge) has been limited to the motion control of the tool head itself, where
the motion trajectory is fed into the Programmable Logical Controller (PLC) of the CNC
Machine in the form of a G-Code. The internal controller of the actuator then guarantees
that the given trajectory is followed up. However, this does not guarantee that the desired
workpiece characteristics are maintained since they remain unconsidered outside the closed-
loop control system. In [1], a preliminary approach was considered, in order to include the
bent curvature, as well as the residual stresses inside the tube, in the closed-loop control
system. In this approach, only tangential bending was considered. However, in [2], it
was proven that the same bending curvature could still be reached using a wide range of
bending head movement combinations y and α see Figure 1. In this work, the previously
developed model is to be modified to include the extra bending possibilities due to over-
and underbending.

1.1. Freeform Bending State of the Art

Freeform bending with a movable die is a novel forming technology that allows for the
bending of the workpiece into complex geometries without the need to change the bending
tool itself. The mechanical construction and the main functionality of each component have
been thoroughly discussed previously in [1,2].
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In [1], the foundation for a preliminary control-loop structure of a freeform bending
machine was laid. Thereby a physical, rheological model based on the Masing model
with a Saint Venant Element was utilized for the derivation of a mathematical formulation
for the elastic-plastic deformation process. For the modeling of the residual stresses, the
hydrostatic pressure was chosen as an indicator. An empirical equation was identified that
related the temperature and curvature with the hydrostatic pressure. However, in [2], it
was shown that residual stresses were not only affected by heating but also by applying
different combinations of displacements y and rotations α of the bending die. Two different
bending techniques were addressed, which were: tangential bending and non-tangential
bending. Tangential bending can be defined as the bending process when the bending die
is oriented based on the kinematic construction of the machine itself (which is the case
in [1]). Non-tangential bending, however, is when the bending die of the tube is slightly bent
over the tangential bending (Overbending) or slightly bent under the tangential bending
(Underbending) (as shown in Figure 1). By introducing the concept of non-tangential
bending, it is possible to get the same bending geometry using different combinations of y
and α. It was also shown that different stress states for the same bent geometries could be
reached by using over- and underbending, thus decoupling the bending geometry from
the respective mechanical properties. In order to be able to consider the residual stresses
inside the workpiece, a foundation for a soft sensor based on an extended Kalman filter
(EKF) was laid in [3,4].

1.2. Goals and Assumptions

In the previous work [1] the main goal was to propose a control structure for the
freeform bending machine that took both the geometry (curvature) as well as the residual
stresses into consideration inside the closed-loop control system. In this contribution,
the previously designed model was modified and extended to include non-tangential
bending (over- and underbending). The goal thereby was to find a mathematical formu-
lation that related different combinations of y and α with their respective curvature and
residual stresses.

The same assumptions that were made in [1] were still valid in this work here; the
6 degrees of freedom (DOF) were reduced to 3 DOF for the sake of simplicity (2 DOF for the
bending die and 1 DOF for the tube feeder). Moreover, it was assumed that the temperature
of the workpiece remained constant during the bending process; the heating unit that was
considered in the previous work [1] was eliminated in this work, and the change in residual
stresses was only considered due to the followed bending strategy. To be noted here is that
all results were based on finite element simulations depicted in [2].
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2. Materials and Methods

In the previous work [1], a rheological mathematical model was sought in order to
mathematically describe the relationship between the resulting end curvature κact with the
respective bending die orientation α (see Figure 1).

ϕp =
ke

ke + kp
α, with (1)

α = da ∗ κB, ϕp = da ∗ κact, hence (2)

κact =
Ke

Ke + Kp
∗ κdes, (3)

κact = 1/Ract and κdes = 1/Rdes distance between the tube guide and the bending die, α
is the orientation of the bending die, ϕp is the plastically deformed bent angle of the tube
after unloading considering the spring-back effect, Ke, Kp are the stiffnesses of the material
in the elastic and plastic region of deformation respectively. The vertical displacement of
the bending die y can be calculated geometrically based on the machine construction,

y =
1− cos(α)

κdes
. (4)

A thorough discussion of the derivation of the previous equations has already been
done in a previous work [1]. The bending process carried out based on these equations is
called tangential bending. In this work, however, a mathematical relationship between the
resulting curvature and residual stresses altogether with the non-tangential bending was to
be investigated. This was done based on simulation results out of a Finite Element Modell
(FEM). According to [2,4], this model has proven to be seemingly accurate in a reliable way
and therefore has been further used for the derivation of the mathematical formulations for
the non-tangential bending.

2.1. Mathematical Model for Curvature in Non-Tangential Bending

In this section, the mathematical relationship between the inputs α and y and the
resulting curvature was to be investigated. To that end, different data relating the output
curvature altogether with its respective bending die dislocations (y and α) were gathered
(based on the simulation results of FEM). In Table 1, the different combinations of y and α

are tabulated.

Table 1. Different combinations between y and α.

y (mm) α (◦)

5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
6 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
7 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
8 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
9 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

10 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
11 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
12 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
13 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
14 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
15 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 2 displays the resulting curvature of different combinations for y = 15 mm with
varying α, as seen in the last row of Table 1. The solid and dashed red lines represent the
motion trajectory of the bending die about the x-axis α and along the y-axis, respectively,
whereas the solid blue line represents the resulting curvature κ (in mm−1). It can be inferred
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that the curvature of the tube undergoes some sort of overshooting upon starting or ending
the bending process. One explanation for that behavior is that the circularity of the tube
profile can no longer be perfectly maintained in these transition regions, i.e., the tube profile
gets distorted and takes, to some extent, an elliptical shape. This profile distortion results
in some ripples on the surface of the tube during these transition regions. However, in
this work, this dynamic-like behavior is neglected, and only the static behavior was taken
into consideration. Therefore, the average of the resulting curvature along the tube is
taken further into consideration. The same applies to the other different combinations of y
and α. Figure 3 shows a 3D representation of the average curvature against the y and α

combinations depicted in Table 1.
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Now that the data was collected and tabulated, the mathematical relationship would
be investigated. For that, five different approaches were considered, and the respective
deviation norm was calculated for each. However, for the sake of briefness, only two
approaches are represented here. The first approach (Equation (5)) was motivated by the
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kinematic model that had been previously derived in [1]. In Equation (6), a quadratic
approach motivated out of the Taylor series was tested:

κ =
a + bcos(α)

y
(5)

κ = ay + bα + cy2 + dα2 (6)

For each approach, the respective a, b, c, and d parameters were identified. Here
the least square method was deployed. Taking the second approach, Equation (6), as an
example, the equation can be rewritten in a matrix form as follows:

κ =
[
y α y2 α2][a b c d

]T
= AP (7)

A in this case, is a matrix composed of the vectors y, α, y2, α2 that maps between the
parameter vector P with the output vector κ. The vectors y, α, and κ were measured based
on the simulation results of the FEM. Since matrix A was a non-square matrix, the pseudo
inverse was calculated in order to identify the parameter vector P for each approach (see
Equation (8)). Figure 4 shows the identified parameters as well as a comparison between
the first approach and the quadratic approach.

P =
(

ATA
)−1

ATκ = A†κ (8)

Eng. Proc. 2022, 26, 16 5 of 9 
 

 

kinematic model that had been previously derived in [1]. In Equation (6), a quadratic ap-

proach motivated out of the Taylor series was tested: 

𝜅 =
𝑎 + 𝑏𝑐𝑜𝑠(𝛼)

𝑦
 (5) 

𝜅 = 𝑎𝑦 + 𝑏𝛼 + 𝑐𝑦2 + 𝑑𝛼2 (6) 

For each approach, the respective 𝑎, 𝑏, 𝑐, and 𝑑 parameters were identified. Here the 

least square method was deployed. Taking the second approach, Equation (6), as an ex-

ample, the equation can be rewritten in a matrix form as follows: 

𝜿 = [𝒚 𝜶 𝒚𝟐 𝜶𝟐][𝑎 𝑏 𝑐 𝑑]𝑇   = 𝑨𝑷 (7) 

𝐴 in this case, is a matrix composed of the vectors 𝑦, 𝛼, 𝑦2, 𝛼2 that maps between the pa-

rameter vector 𝑃 with the output vector 𝜅. The vectors 𝑦, 𝛼, and 𝜅 were measured based 

on the simulation results of the FEM. Since matrix 𝐴 was a non-square matrix, the pseudo 

inverse was calculated in order to identify the parameter vector 𝑃 for each approach (see 

Equation (8)). Figure 4 shows the identified parameters as well as a comparison between 

the first approach and the quadratic approach. 

𝑷 = (𝑨𝑻𝑨)−𝟏𝑨𝑻 𝜿 = 𝑨† 𝜿 (8) 

 

 
 

(a) (b) 

Figure 4. (a) First approach motivated out of the kinematic model in Equation (5), (b) Quadratic ap-

proach, Equation (6). 

It can be inferred that the approach motivated by the kinematic model had the high-

est deviation norm among the other approaches (1.5 × 10−3). Using the quadratic approach, 

very good compliance between the FEM results and the results of the static model was 

reached. In order to check whether adding more terms significantly improved the devia-

tion norm, a fifth mixed term was introduced to the quadratic approach. However, this ex-

tra term did not significantly improve the error. Therefore, the quadratic approach, Equa-

tion (6), was accepted as a mathematical representation of the curvature in conjunction 

with non-tangential bending. 

2.2. Mathematical Model for Residual Stresses in Non-Tangential Bending 

Here, the same 𝑦 and 𝛼 combinations depicted in Table 1 were utilized. The data of 

the residual stresses were also collected from the same FEM. Figure 5 shows the simula-

tion results of the last row of Table 1. The residual stresses represented here are those on 

the surface of the inner curve of the bent tube, i.e., the surface that was undergoing com-

pression. In addition, here, the average value of the curvature 𝜅 for each 𝑦 and 𝛼 combi-

nation was taken since the static behavior of the system was the main focus of this work. 

Figure 4. (a) First approach motivated out of the kinematic model in Equation (5), (b) Quadratic
approach, Equation (6).

It can be inferred that the approach motivated by the kinematic model had the highest
deviation norm among the other approaches (1.5 × 10−3). Using the quadratic approach,
very good compliance between the FEM results and the results of the static model was
reached. In order to check whether adding more terms significantly improved the de-
viation norm, a fifth mixed term was introduced to the quadratic approach. However,
this extra term did not significantly improve the error. Therefore, the quadratic approach,
Equation (6), was accepted as a mathematical representation of the curvature in conjunction
with non-tangential bending.

2.2. Mathematical Model for Residual Stresses in Non-Tangential Bending

Here, the same y and α combinations depicted in Table 1 were utilized. The data of
the residual stresses were also collected from the same FEM. Figure 5 shows the simulation
results of the last row of Table 1. The residual stresses represented here are those on the
surface of the inner curve of the bent tube, i.e., the surface that was undergoing compression.
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In addition, here, the average value of the curvature κ for each y and α combination was
taken since the static behavior of the system was the main focus of this work.
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For system identification, five different approaches were also tested: a linear approach,
a quadratic approach, a cubic approach, and a quartic approach. The parameters of each
approach were identified using the same least square method that was previously discussed
in the last subsection. For the sake of briefness, only two approaches were represented and
compared to their respective FEM simulations (see Figure 6). It can be inferred that the
cubic approach has a lower deviation norm compared to the linear approach.
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3. Developing a Closed-Loop Control System

In the preceding section, a mathematical model was developed for each curvature and
residual stress. For the curvature, the quadratic approach was accepted:

κ = 2.504× 10−4y + 6.517× 10−5α− 3.888× y2 − 8.516× 10−7α2, (9)

The physical units are omitted for the sake of visual clarity. For the residual stresses,
the cubic approach showed the least deviation with the minimum number of terms. How-
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ever, to simplify the equation inversion for the development of the mapping function, the
linear approach was accepted as a simplified mathematical representation.

σ = −6.39y− 0.331α (10)

Figure 7 shows a newly proposed closed-loop control system structure that takes the
effect of non-tangential bending into account. Here, the actual residual stresses σact, as
well as the actual curvature κact, are to be compared with their respective desired residual
stresses σdes and curvature κdes. The deviation is then introduced to a PI-Controller that, in
turn, produces a correction signal to be augmented on the feedforward signal. The result
is then introduced to a mapping block, which, in turn, translates these signals into the
respective bending die translation and orientation.
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3.1. Deriving the Mathematical Equations for the Mapping Block

The mathematical equations for the mapping block can be derived based on
Equations (9) and (10). For this reason, the linear approach for the residual stresses has
been taken further since it can be simply inverted. Equation (10) can be rewritten in terms
of α as follows:

α = −19.305y− 3.021σ (11)

by substituting in Equation (9):

κ = 2.503× 10−4y + 6.517× 10−5(−19.305y− 3.021σ)− 3.888× 10−6y2−
8.516× 10−7(−19.305y− 3.021σ)2,

which can be further simplified to:

y2 + (0.31σ + 3.15)y + 0.02σ2 + 0.61σ + 3116.24κ = 0 (12)

This equation can now be solved by using the quadratic equation y1,2 = −p/2±√
p2/2− q where p = 0.31σ + 3.15 and q = 0.02σ2 + 0.61σ + 3116.24κ. By substituting

for y1,2 in Equation (11), the corresponding bending orientation α can be calculated. In
order to determine which value for y and α should be accepted, the boundary conditions
should be taken into consideration. Hereby the case where y = 0 and α = 0 is considered.
In this case, the curvature and residual stresses are expected to be zero for each. This
is also verified using Equations (9) and (10). In order to check whether this condition
is not violated, we substitute with σ = 0 MPa and κ = 0 mm−1 in the parameters of
the quadratic equation (p and q). In that case, the parameters will be p = 3.15 and

q = 0; i.e.,y1,2 = −(3.15/2)±
√
(3.15/2)2 − 0. This shows that the boundary condition(

y = 0 ∀κ = 0 mm−1, σ = 0 MPa
)

can only be achieved when:

y = y1 = − p
2
+

√
p2

4
− q (13)
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By substituting Equation (13) in Equation (11), the bending die orientation α will be:

α = −19.305y1 − 3.021σ (14)

It can easily be checked that for y1 = 0 mm and σ = 0 MPa, the bending die orientation
α is also 0◦. Equations (13) and (14) are implemented inside the mapping block depicted in
Figure 7. In the following section, the model earlier introduced is simulated.

3.2. Simulation Results

The previous control scheme depicted in Figure 7 was implemented and simulated
using the MATLAB-Simulink software package. Figure 8 shows the simulation results for
the curvature and residual stresses, respectively. From there, it can be inferred that the
trajectory of the actual residual stresses without a controller coincides with the respective
desired residual stress. In contrast, the actual curvature deviates to some extent from the
desired curvature. This can be justified by the fact that the identified models are full of
uncertainties. For example, a linear model for the residual stresses was chosen to simplify
the inversion of the function for the mapping block. However, the introduction of a PI
controller significantly improved the coincidence of the actual curvature trajectory with
its respective desired trajectory (see Figure 8a). This improvement came at the cost of
the residual stresses, i.e., the actual trajectory of the residual stresses has to some extent,
lost its coincidence with its respective desired trajectory (Figure 8b). This can be again
justified by the fact that the chosen models are full of uncertainties to be dealt with in the
upcoming works.
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4. Conclusions and Discussion

In this work, a mathematical representation of the non-tangential bending was pro-
posed and simulated via MATLAB-Simulink. The simulation results showed that it was
possible to control the residual stresses decoupled from the respective curvature. The model
of the residual stresses was greatly simplified in order to facilitate the design of the mapping
function that converted the κ and σ signals into respective bending die movements (y and
α). This simplification came to be expected with some measure of sacrificing the accuracy
of the coincidence of the desired and actual curvature trajectories. The introduction of a PI
controller, however, could significantly improve the quality of the desired actual trajectory
follow-up. In upcoming works, this problem can be solved by training a neural network
or a Bayesian Gaussian process [5] that is able to include all the non-linearities out of the
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measurements and develop a more accurate model for the curvature and residual stresses,
respectively, as well as a more accurate mathematical function for the mapping block.

It must be noted that this work focuses only on the static behavior of the workpiece
during freeform bending; the dynamic-like behavior depicted in Figure 2 is not considered.
This behavior should be a concern for upcoming work as it constitutes an important step
for deriving a formula for predicting the error propagation along the tube and, accordingly,
designing a predictive controller that is able to minimize this error in an optimized way.
In [6], an approach for the trajectory prediction of the freeform bending process based on
an extended Kalman filter was introduced. Moreover, a heating system is planned to be
embedded inside the bending machine for the further adjustment of the residual stresses
inside the tube [7].
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