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Abstract: The paper presents a model to carry out a short-term flow data extension for a minimum of
30 years using the Gauss–Newton Empirical Regression Algorithm (GNRA) for the determination
of the hydropower generation capacity of rivers in ungauged channels. An averaged 2 years of
precipitation, observed experimental discharged data, and 30 years of historical and predictive
precipitation data were used to generate a regression model equation after authentication analysis. A
minimum, average, and maximum of 30 years of historical, and predictive discharge data and power
characteristics of the river were generated. A discharge predictive accuracy of 96.71% and a Pearson
Correlation Coefficient of 0.954 were established between the experimental and model results. The
river has minimum, average, and peak power potentials of 5 MW, 10 MW, and 20 MW, respectively,
and is capable of yielding power throughout the year.
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1. Introduction

The need to improve Nigeria’s power generation has emphasized the importance of
improving the country’s hydropower generation output [1]. However, the development of
hydropower resources is currently being hampered by a hydrological data shortage due to
large ungauged river channels. Data extension techniques using empirical rainfall-runoff
models are used to overcome this challenge [2].

A recent study [3] developed a new hybrid biogeography-based optimization (BBO)
technique to achieve a better capability to predict daily stream flow. The study referenced
in [4] applied regression analysis and clustering in catchments to give excellent results
in the data analysis and forecasting of hydrological runoff; the study referenced in [5]
also used the regression tree ensemble approach to develop a model with good accuracy
for runoff prediction. Ramana validated the adequacy of regression analysis for runoff
prediction with the formulation of a model with three hydrological modules [6]. The
present methods of modeling surface runoff involve complex evaluation processes with
many interconnecting variables [7] that are not available for most river basins in Nigeria.

The paper presents a faster, cheaper, and more convenient model to carry out short-
term flow data extension to a minimum of 30 years using the Gauss–Newton Regression
Algorithm (GNRA) for data extension in ungauged river channels. GNRA is one of the
most popular, efficient, and simple methods for solving non-linear problems [8].

2. Materials and Methods

The observed 2 years of experimental discharge data were extended to 30 years of
discharge data using GNRA. The regression model equation was generated and validated
using rainfall data for 2018 and 2019 for the study period. The validated model equation
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was used to carry out 30 years of the data extension process. Correlation analysis was
implemented between the model and experimental results.

Modeling Equations

The general relationship for the empirical modeling process is shown in Equation (1).

Q = f [X, Y] (1)

where

Q is the runoff output;
X is the input dataset of rainfall;
Y is the input dataset of historical runoff.

The regression model equation generated by the study process is given in Equation (2).

D = 6.5870 + 0.2614F − 0.0042F2 + 0.000019F3 (2)

D is the discharge (m3/s);
F is the rainfall (mm).

The hydroelectric power output was evaluated using Equation (3).

P = ρghDη (3)

where

P is the generated power (MW);
ρ is the density of water (1000 kg/m3);
g is the acceleration due to gravity (9.81 m2/s);
h is the head of water (50 m);
η is the plant efficiency (0.90).

3. Results and Discussions
3.1. River Orle Rainfall–Discharge Regression Output Analysis

The River Orle rainfall–discharge output is shown in Figure 1. It indicates a good
fit, with the data point close to the regression line plot. This indicates low values of
residuals, which equally indicates the agreement between the model and experimental
results. Figure 2 represents the plot of the observed experimental results and the regression
model output.
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Figure 2. Profile of experimental and model discharge plot.

The mean annual discharge for the experimental and model results are 19.282 m3/s
and 19.937 m3/s, respectively, whereas the total average discharges are 231.393 m3/s and
239.252 m3/s, respectively. This indicates a model discharge predictive accuracy of 96.71%.
The large difference in the experiment and model discharge for June and July is because the
model data were derived from 60 years of monthly rainfall data, whereas the experimental
data were derived from 2 years of average monthly data. This is because there used to be
occasional high-volume rainfall between June and July for a number of years.

The proximity in the discharge indicates that the monthly discharge of the river falls
within the same range and demonstrates the accuracy and precision of the model.

3.2. Power Generation Analysis

Figure 3 indicates the discharge and power generation profile of the river. The medium
flow range of the river, Q10 to Q70, is between 10 m3/s and 42 m3/s which corresponds to
the 5 MW–20 MW power output range. The river has a peak power output of 20 MW, base
power of 10 MW, and low power of 5 MW, respectively, within this hydropower power
generation range.
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4. Conclusions

A 30-year historical and predictive discharge data extension was carried out using the
Gauss–Newton Regression Algorithm from the observed 2 years of experimental discharge
data, in order to meet the requirements for the design of hydropower facilities. The profile
of the river’s average monthly discharge and power generation output was determined
with the generated and validated model. Model discharge predictive accuracy of 96.71%
and a Pearson Correlation Coefficient of 0.954 were established between the experimental
and model results. The river has minimum, average, and peak power potentials of 5 MW,
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10 MW, and 20 MW, respectively, within the medium flow range, and is capable of yielding
power throughout the year.
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