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Abstract: Affective computing and stress recognition from biosignals have a high potential in 
various medical applications such as early intervention, stress management and risk prevention,  
as well as monitoring individuals’ mental health. This paper presents an automated processing 
workflow for the psychophysiological recognition of emotion and stress states. Our proposed 
workflow allows the processing of biosignals in their raw state as obtained from wearable sensors. 
It consists of five stages: (1) Biosignal Preprocessing—raw data conversion and physiological data 
triggering, relevant information selection, artifact and noise filtering; (2) Feature Extraction—using 
different mathematical groups including amplitude, frequency, linearity, stationarity, entropy and 
variability, as well as cardiovascular-specific characteristics; (3) Feature Selection—dimension 
reduction and computation optimization using Forward Selection, Backward Elimination and Brute 
Force methods; (4) Affect Classification—machine learning using Support Vector Machine, Random 
Forest and k-Nearest Neighbor algorithms; (5) Model Validation—performance matrix computation 
using k-Cross, Leave-One-Subject-Out and Split Validations. All workflow stages are integrated into 
embedded functions and operators, allowing an automated execution of the recognition process. 
The next steps include further development of the algorithms and the integration of the developed 
tools into an easy-to-use system, thereby satisfying the needs of medical and psychological staff. 
Our automated workflow was evaluated using our uulmMAC database, previously developed for 
affective computing and machine learning applications in human–computer interaction. 
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1. Introduction 

Affective Computing is a multidisciplinary field with high potential in many human–computer 
interaction applications [1]. Since Picard proposed the concept of affective computing, researchers 
from various disciplines have been investigating diverse perspectives, ranging from theories to 
applications and from design to evaluation. Among them is affective computing for healthcare 
technologies and medical applications [2]. One emerging application associated with the medical 
field is the emotion and stress recognition [3]. It is a promising topic seeing its wide prospect in daily 
applications such as early intervention, stress management, risk prevention as well as monitoring 
individuals’ mental health. In this context, various modalities ranging from facial, speech, text and 
biosignal analysis have been adopted for the purpose of emotion and stress recognition [4].  
Among these modalities, psychophysiological signals have the valuable advantage as “honest signals”: 
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they cannot be easily triggered by any conscious or intentional control and are continuously  
available [5]. Affective computing from biosignals acquired through wearable sensors, adds the 
convenience of mobile implementation in real-life in-the-wild applications [6,7].  

For the implementation of affective computing and stress recognition in daily life applications, 
several prerequisites have to be achieved. On one side, the reflection of affective states in 
physiological patterns demands a particularly robust and reliable biosignal analysis [8,9]. On the 
other side, the integration of the recognition process into daily applications of non-experts in 
biosignal processing and machine learning requires an automated processing of the workflow  
stages [10,11]. This paper presents an automated processing workflow for the psychophysiological 
recognition of emotion and stress states. Our proposed workflow allows processing biosignals in 
their raw state as obtained from wearable sensors. It consists of five stages, allowing biosignal 
preprocessing, feature extraction, feature selection, affect classification and model validation.  
These aspects will be discussed in the following sections. 

2. Materials and Methods 

The proposed automated biosignal processing workflow for affective computing and stress 
recognition consists of the stages illustrated in Figure 1.  

 

Figure 1. The biosignal processing workflow for affective computing and stress recognition. It is based 
on psychophysiological biosignals as input. The workflow consists of the main steps: Biosignal 
Preprocessing, Feature Extraction, Feature Selection, Affect Classification and Model Validation. The 
output consists of recognition rates of different emotion and stress states. 

These workflow steps are described in the following subsections. 

2.1. Psychophysiological Biosignals 

Our workflow allows processing biosignals in their raw state as obtained from the bioamplifiers. 
They are usually acquired via electrodes and sensors connected to the subjects. The biosignals 
currently implemented in the workflow include the following physiological channels:  

• Electrocardiography (ECG): It measures the electrical cardiac activity and is related to the 
activity of the sympathetic nervous system. The magnitude of the electrical potential is obtained 
from the difference between positive and negative electrodes placed on the skin surface. 

• Electromyography (EMG): It measures the electrical muscle activity and is also related to the 
activity of the sympathetic nervous system. Relevant EMG channels include the Zygomaticus, 
Corrugator and Trapezius muscles known to be active during emotions. 

• Electrodermal activity (EDA) in terms of Skin Conductance Level (SCL): It indicates the activity 
of the sweat glands in the skin and is directly regulated by the sympathetic nervous system and 
therefore sensitive to external stimuli.  

• Respiration (RSP): It measures breathing patterns such as breathing frequency or relative depth 
of breathing. Respiration data can be acquired using piezoelectric sensors that react to pressure 
variations caused by the thoracic and abdominal fluctuations during respiration. The sensors are 
usually embedded into an elastic belt system worn around the thorax. 

• Temperature (TEMP): It detects the changes in hotness and coolness of the skin. Body 
temperature is measured using a temperature sensor placed on the skin (for example on the 
fingers) and that converts the temperature changes into an electrical signal. 

The biosignal data used for developing the present workflow were acquired with the 
bioamplifier system g.MOBIlab+ from g.tec. The data are part of our previously acquired uulmMAC 
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dataset—A Multimodal Affective Corpus for Affective Computing in Human–Computer 
Interaction—that is freely available for academic use and research applications [12]. 

2.2. Biosignal Preprocessing 

The first analysis step after the biosignal acquisition and prior the feature extraction is the 
preprocessing of the biosignal raw data. This includes extracting the raw data from the bioamplifiers 
and converting them into a readable format, triggering the physiological data with the help of subject-
specific logger files, cutting irrelevant data and selecting relevant information from the data, and 
performing various filtering steps to the different biosignal channels.  

The main goal of filtering is to remove various artifacts and reduce the amount of noise  
within each specific biosignal channel. For instance, ECG signals are affected by different kinds of 
noise including: baseline wander mainly caused by patient respiration, power line interference due 
to differences in the electrode impedances and to stray currents through patient and cables 
(considered as narrow-band noise and centered around 50 Hz and 60 Hz), as well as high frequency 
noise and other artifacts generated from equipment and the environment. Therefore, various  
signal-specific algorithms and filtering strategies are used for removing different kinds of noise and 
artifacts including bandpass filtering, signal detrending and artifact correction. In our workflow,  
we implemented butterworth bandpass filters and low-pass filters. Butterworth bandpass filters can 
be used to eliminate noise and artifacts from ECG signals, to isolate the bursts of EMG signals that 
contain relevant information about muscle activity, and to optimize the RSP signals. Low-pass filters 
are implemented to smooth the EDA and TEMP signals. The cut-off frequencies and filter orders can 
be easily adapted to individual channels and different datasets.  

Finally, the resulting filtered data are saved and exported into a readable Matlab format for 
further processing. 

2.3. Feature Extraction 

The next step after data preprocessing is to extract appropriate features from the biosignals for 
an accurate further analysis. Therefore, each selected and preprocessed signal is first decomposed 
into small sliding windows. Reasonable window sizes for biosignals are between 5 s and 10 s with 
sliding steps in the range of 1 s or 2 s. Standard feature extraction methods based on pure 
morphological characteristics are not always sufficient for a reliable representation of specific 
affective states. Therefore, extended features shown to be efficient in the pain recognition field are 
adopted and implemented in our workflow for affective computing and stress recognition [13].  
The features are extracted from six mathematical groups including amplitude, frequency, linearity, 
stationarity, entropy and variability. This set of features from the different mathematical groups is 
calculated for each of the biosignal channels. While these features contain meaningful information 
for the muscle, skin, respiration and temperature signals, the analysis of cardiovascular signals 
requires the extraction of specific ECG wave characteristics of the heart beats, which are essential for 
reliable information interpretation. Therefore, additional ECG specific features such as QRS complex 
detection, various interval durations and heart rate variability are also computed based on our 
ecgFEAT toolbox for cardiovascular feature extraction and analysis [14]. 

The extracted features are then normalized by performing a feature z-transformation for each 
participant and channel. The standardization converts the feature values into z-scores by subtracting 
the mean and dividing by the standard deviation. 

2.4. Feature Selection 

Among the large number of extracted features, only non-redundant and relevant ones should 
be selected for further processing. This is necessary in order to enhance the speed of the algorithms 
and to increase the efficiency of the recognition. A pre-selection is first performed using feature 
reduction to exclude similar redundant features based on statistical analysis with the Pearson 
correlation coefficient r. Thereby, the dimension of the features is reduced by examining each pair of 
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features under the condition r > 0.95. In case of correlated features, the feature requiring the higher 
computation time is removed. 

For further enhancing the efficiency of the classification, only relevant decisive features should 
be selected for further processing. Therefore, various feature selection methods are available based 
on different strategies. In our workflow, the following three feature selection methods are 
implemented including: Forward Selection (FS), Backward Elimination (BE) and Brute Force (BS) 
methods. The Forward Selection method begins with an empty selection of features and subsequently 
adds one feature (from the features set obtained after removing correlated features), which leads to the 
highest increase in performance in each iteration. The process is repeated until no increase in performance 
is observed anymore. On the other hand, the Backward Elimination method starts with the whole set of 
extracted features (obtained after removing correlated features) and subsequently removes one feature 
which results in the least decrease in performance in each iteration. Thus, the iteration of the Backward 
Elimination runs as long as there is no decrease in performance. Further, the Brute Force method tries 
all the possible combinations of features and selects the ones leading to the highest performance. 
Since the computation time associated with this method is quite expensive, the Brute Force is usually 
the last option to be used when only a small set of features is left after feature reduction. 

2.5. Affect Classification 

For the classification task, several machine learners are commonly used based on different 
decision algorithms. In our workflow, the following three classification algorithms are implemented 
including: Support Vector Machine (SVM), Random Forest (RF) and k-Nearest Neighbor (kNN). 
Among these classifiers, k-Nearest Neighbor is the simplest algorithm where the category of an 
unseen sample is determined by a majority vote of its k nearest neighbors. The performance and 
computation time of kNN depend on the size of the training sample. The larger the training sample 
is, the longer is the computation time and the better is the performance. The parameter k is set as an 
odd number (e.g., 3, 5, 7, 9). A too small value of k results in too much noise, while a large value of k 
leads to expensive computations. Random Forests are an ensemble learning, consisting of a great deal 
of decision trees. The following parameters are important for RF classifiers: the number of trees  
(e.g., 11) and the depth of each tree. The higher the number of trees is, the better is to learn the data 
but the longer is the training process. Further, the deeper the tree is, the more information about the 
data can be captured. Support Vector Machines are based on finding an optimal hyperplane which 
has the largest distance to the nearest training data points of any category. With the help of kernels, 
SVM algorithms are only suitable in linear problems, but also perform efficiently in non-linear 
classification tasks. For SVM with a RBF (radial basis function) kernel, the parameter C controls the 
generalization ability of the model, while the parameter gamma represents the degree of nonlinearity 
of the model. The higher the value of C is, the easier the over-fitting. While the higher the value of 
gamma is, the more nonlinear is the model. 

2.6. Model Validation 

In order to evaluate the performance of the feature selection and classification process, various 
validation methods are available for computing a performance matrix. In our present workflow, three 
validation methods are implemented including k-Cross Validation (CV), Leave-One-Subject-Out 
(LOSO) cross validation and Split Validation (SV). k-Cross Validation divides the whole dataset into 
k subsamples and utilizes one of these subsamples for testing and the remaining subsamples for 
training within one iteration. This is repeated k times and the performance is computed as the average 
of the k different classification rates. Leave-One-Subject-Out cross validation is similar to the k-Cross 
Validation, but divides the whole dataset according to the participants. That is, each subsample in 
the case of Leave-One-Subject-Out cross validation comprises the complete data of one subject. 
Finally, Split Validation is not based on the cross principle. Instead, it just splits the whole sample 
into training and test subsamples according to a percentage predefined by the user. 
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3. Results and Discussion 

The described stages of the proposed workflow for affective computing and stress recognition, 
illustrated in Figure 1, were developed and integrated into automated biosignal processing and 
machine learning tools. The first steps of the workflow, including biosignal preprocessing and feature 
extraction, are handled in MATLAB, while the second part of the workflow, including feature 
selection, affect classification and model validation, is processed in RapidMiner. 

For the first part, various Matlab-based functions were developed and implemented, allowing 
performance of the different steps consisting of raw data conversion and physiological triggering, 
data cutting and information selection, signal filtering and feature extraction. These steps are 
integrated into embedded functions, allowing an automated processing of this workflow part.  
The results are structured into separate RawData, TriggerData, CutData, FilteredData and 
ExtractedFeatures output files. As for the second part, various operators were designed in 
RapidMiner making it possible to automatically run the recognition process based on a set of 
extracted features obtained from the first part. The first layer of the process contains the main 
operators allowing data import, feature reduction, class selection and model training and testing.  
The last operator for model training and testing allows switching to the next layers consisting of 
various operators for feature selection, affect classification and model validation. Particularly, the 
second layer consists of operators defining the classification algorithms, while the third layer is 
placed within the classifiers and includes both feature selection and model validation operators. 
Moreover, various operators for optimizing the parameters of the different classification algorithms 
are implemented, including optimization of the C and gamma parameters in the SVM classifiers,  
the number of trees in the RF classifiers and the k value in the kNN classifiers. 

The workflow was evaluated using biosignal data from our uulmMAC database for affective 
computing and machine learning applications [12]. The psychophysiological data were acquired in a 
human–computer interaction through an experimental setting using the g.MOBIlab+ wireless 
bluetooth bioamplifier system equipped with several physiological sensors. All biosignal channels 
were synchronously recorded at a fixed sampling rate of 256 Hz. We mainly used the classes overload 
and underload to evaluate the functional capability and general operability of the whole workflow. 
The next steps include further development of the algorithms and the integration of the developed 
tools into an easy-to-use system with a graphical interface [10], satisfying the needs and requirements 
of medical and psychological staff. In addition, a systematic evaluation of the different feature 
selection, classification algorithms and validation methods will be performed for various classes and 
stress-related recognition tasks. 

4. Conclusions 

This paper presents our workflow for affective computing and stress recognition from biosignal 
data obtained from physiological sensors. After a description of the biosignal channels included in 
the workflow, each step involved in the processing of the psychophysiological data is described, 
including signal preprocessing, feature extraction, feature selection, affect classification and model 
validation. Finally, the implementation and integration of the described steps are presented in the 
results. The present workflow is a valuable step towards automated affective computing and stress 
recognition for real-life applications in the medical and psychological fields. 
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