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Abstract: Periodic monitoring of breath sounds is essential for early screening of obstructive upper 
respiratory tract infections, such as inflammation of the airway typically caused by viruses. As an 
immediate first step, there is a need to detect abnormalities in breath sounds. The adult average 
male lung capacity is approximately 6 liters and the manifestation of pulmonary diseases, 
unfortunately, remains undetected until their advanced stages when the disease manifests into 
severe conditions. Additionally, such rapidly progressing conditions, which arise due to viral 
infections that need to be detected via adventitious breath sounds to take immediate therapeutic 
action, demand frequent monitoring. These tests are usually conducted by a trained physician by 
means of a stethoscope, which requires an in-person visit to the hospital. During a pandemic 
situation such as COVID-19, it is difficult to provide periodic screening of large volumes of people 
with the existing medical infrastructure. Fortunately, smartphones are ubiquitous, and even 
developing countries with skewed doctor-to-patient ratios typically have a smartphone in every 
household. With this technology accessibility in mind, we present a smartphone-based solution 
that monitors breath sounds from the user via the in-built microphone of their smartphone and our 
Artificial Intelligence (AI) -based anomaly detection engine. The presented automated classifier for 
abnormal breathing sounds is able to detect abnormalities in the early stages of respiratory 
dysfunctions with respect to their individual normal baseline vesicular breath sounds, with an 
accuracy of 95%, and it can flag them, and thus enhances the possibility of early detection. 
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1. Introduction 

In humans, the respiratory system consists of the respiratory muscles, the lungs, and the 
airways. Breath sounds are the sounds produced by the structures of the lungs during breathing. 
The exchange of air between the atmosphere and the lungs (inspiration) and vice-versa (expiration) 
generates these breathing sounds. Breathing sounds are broadly classified as normal and abnormal 
breathing sounds. Normal breathing sounds can be loud, high pitched sounds heard over the 
trachea, medium pitched bronchovesicular sounds heard over the mainstream bronchi and soft, low 
pitched vesicular sounds heard over the chest. The most common types of abnormal breathing 
sounds are crackles, wheezes, rhonchi, and stridor [1]. Each of these abnormal breathing sounds can 
be a symptom of some serious respiratory diseases. Therefore, listening to breath sounds is an 
important part of early diagnosis. In this paper, we present an automated detection of anomalies in 
breath sounds using a smartphone [2,3] with nearly 95% accuracy against the user's normal baseline 
and it offers a personalized report and trend of the results. In [1], measuring lung function is 
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achieved by calculating the exhaled flow rate from the smartphone microphone. In [4], sequence 
classification models such as Hidden Markov Model (HMM) and Long Short-Term Memory (LSTM) 
variations are used to identify breath cycles followed by feedback. In [5], respiratory sounds are 
classified using adaptive neuro-fuzzy inference systems and artificial neural networks using the 
power spectrum density PSD as a feature. In [6], automation of lung analysis is carried out using 
time and frequency domain features such as variance, sum of moving average, spectrum mean, etc. 
In [7], the features of the Mel Frequency Cepstral Coefficients (MFCC) are analyzed using one-way 
ANOVA and are fed to some classification algorithms. In [8], spectral and wavelet features are used 
with various classification algorithms. In [9], Mel frequency analysis of breathing sounds is achieved 
with pattern recognition techniques to separate the breathing phases, to estimate the lung volume, 
and detect the presence of COVID-19. 

In this paper, we have made use of a sound sensor in a smartphone without requiring any 
external sensors as shown in Figure 1. The sounds acquired are analyzed using various machine 
learning as well as deep learning algorithms. 

 
Figure 1. Shows a picture of a person recording her breath sounds by breathing into the 
smartphone’s microphone. 

2. Methodology 

The flowchart of the steps used in this paper is represented in Figure 2. 

 

Figure 2. Flowchart of the steps used in this paper. 

2.1. Breath Detector 

The data used for the breath detector are collected from various sources, including the 
Environmental Sound Classification (ESC-50) dataset [10]. The ESC-50 dataset is a publicly available 
dataset that provides a huge collection of speech and environmental sounds. This collection of 
sounds is categorized into 50 classes, one of them being breath sounds. We have used 592 breath 
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sounds and 592 other environmental sounds to train our breath detector. As a pre-processing step, 
normalization is performed on the signals to remove sharp or sudden changes. Further, to remove 
background noise, the signals were filtered using a band-pass filter with a frequency range of 100–
2500 Hz. We calculated the Mel Frequency Cepstral Coefficients (MFCC) for audio samples. For the 
feature vector, we took the mean of the MFCC features corresponding to all the frames [6], the 
feature vector is fed as input to the breath detector, which uses 3 different machine learning 
algorithms, which are Random Forest (RF), Logistic Regression (LR) and K-Nearest Neighbors 
(KNN) for binary classification. 

We selected the final class label by majority voting on the predictions of all the 3 models. 

2.2. Anomaly Detection Engine 

The diagnosis engine gives the final result to the users—whether they have normal or labored 
breathing. The data for normal and abnormal breathing sounds are collected from various data 
sources e.g., RALE database [11]. At the time of writing the paper, we had 295 normal and 295 
abnormal sounds. 

2.2.1. Machine Learning-Based Classifiers 

The audio samples were pre-processed and by applying fast Fourier transform (FFT), we 
calculated the power spectrum density (PSD) of the data set. Since the PSD has excessive data points, 
we decided to divide the PSD of each signal into 32 segments for which the individual averaged PSD 
is calculated. These 32 averaged values along with MFCCs make up the feature vector [5]. The feature 
vector is fed to 5 different learning algorithms [12], which are Artificial Neural Networks (ANN), 
Support Vector Machines (SVM), Random Forest (RF), Logistic Regression (LR), and K- Nearest 
Neighbors (KNN) for classification into normal and labored breathing sounds [7]. The final class 
label is obtained by majority voting. 

2.2.2. Convolutional Neural Network  

The audio signals are pre-processed, and spectrogram images are generated using FFT ([8,12]). 
The images are resized into 28 × 28 grayscale images. The images are passed into the Convolutional 
Neural Network (CNN) for classification ([13,14]). The images are passed to two convolutional 
layers consisting of 32 filters and 3 × 3 kernel size with a 2 × 2 max-pooling layer in between to learn 
the complex features, which are then passed to another 2 × 2 max-pooling to represent the learned 
features in lower dimensions. The image is flattened to 1 dimension and then passed to a fully 
connected layer with 128 neurons. The final layer is the softmax classification layer with 2 neurons to 
distinguish between normal and labored sounds. Rectified Linear Unit (ReLU) activation function is 
used, and Adam is used as an optimizer. 

2.2.3. Ensembled Convolutional Neural Network  

We have used a form of ensembling that involves taking an average of the outputs of the 
models in the ensemble [15]. We have created two small CNNs and each model is trained separately 
on the training set of images and each is evaluated using the test set. The first CNN model is simple 
and similar to the one used in the above method. The second CNN model is a little more complex 
compared to the first. In this, we have used two sets of three convolution layers with 2 × 2 kernel size 
and filters of 32 and 64, respectively, which are followed by a max-pooling layer. Then, the images 
are passed to a convolution layer, which generates 2 feature maps followed by a global average 
pooling layer and a softmax classification. Further, we have put the two models in an ensemble for 
evaluation. The results depict that the ensemble performs better on a test set than a single model. 

2.2.4. Gated Convolutional Recurrent Neural Network  

The inspiration for this model comes from the work by [16]. The Gated Convolutional Recurrent 
Neural Network (Gated CRNN) model has two convolutional layers followed by a Gated Recurrent 
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Unit (GRU). The models use a dropout of 0.1 and 0.3, respectively, and are finally followed by a 
sigmoid layer. This model requires lesser memory usage and is quite a lot faster than the other 
models since the GRU has relatively fewer parameters. Categorical cross-entropy is used as a loss 
function for this model. 

3. Results 

To evaluate the models, we have used the macro average of the performance metrics of 
accuracy, sensitivity/recall, precision, and F1-score on both the classes. These performance metrics 
are based on confusion matrices.  

3.1. Breath Detector 

The performance metrics of all the models we have used for breath detection are reported in 
Table 1. 

Table 1. Performance metrics for breath detector. 

Model Test Accuracy (%) Precision (%) Recall (%) 
KNN 99.39 98.00 99.00 

RF 99.10 98.00 98.00 
LR 98.79 98.00 98.00 

3.2. Anomaly Detection Engine 

The performance metrics for machine learning-based classifiers in the anomaly detection engine 
are reported in Table 2. 

Table 2. Performance metrics for machine learning-based classifiers in the anomaly detection engine. 

Model Test Accuracy (%) Precision (%) Recall (%) 
LR 91.35 91.00 91.00 

SVM 93.60 93.00 94.00 
ANN 94.70 92.00 90.00 

RF 91.01 92.00 90.00 
KNN 91.50 92.00 90.00 

The confusion matrices for the CNN model, ensemble CNN model, and Gated CRNN model 
are reported in Figure 3. At the moment, with limited data available, the overall accuracy of the deep 
learning-based binary-class classifier is 94%. Future work will continue to improve this model as 
more training data become available. 

  
 

(a) (b) (c) 

Figure 3. Normalized confusion matrix for (a) CNN model; (b) ensemble CNN model; and (c) Gated 
CRNN model (in percentage).  
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4. Discussions 

The presented solution can be further extended into a platform to aid the screening of various 
lung diseases based on breath sounds. A cloud-based implementation will allow the use of AI 
algorithms that necessitate greater computation. Additional patient data will further improve 
accuracy and specific detection. 

5. Conclusions 

In this paper, we present an AI-based tool for the detection of anomalies in breath sounds 
acquired via a smartphone with an accuracy of 95% via machine learning and deep learning 
techniques. This application can serve as an aid and an essential tool for early detection of anomalies 
in breath sounds ([17,18]), such as experienced in the recent pandemic situation caused by 
COVID-19. 

Acknowledgments: This work was completed as part of an internship project at Tata Research and 
Development and Design Centre (TRDDC), Pune, India.  
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